skip to main content


Search for: All records

Creators/Authors contains: "Walters, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Paleohydrologic proxy data and climate models show how and why eccentricity and precession influenced early Eocene hydroclimate. 
    more » « less
    Free, publicly-accessible full text available August 4, 2024
  2. Lacustrine strata are often among the highest-resolution terrestrial paleoclimate archives available. The manner in which climate signals are registered into lacustrine deposits varies, however, as a function of complex sedimentologic and diagenetic processes. The retrieval of reliable records of climatic forcing therefore requires a means of evaluating the potential influence of changing sedimentary transfer functions. Here, we use high-resolution X-ray fluorescence core scanning of the Wilkins Peak Member of the Green River Formation to characterize the long-term evolution of transfer functions in an ancient lacustrine record. Our analysis identifies a shift in the frequency distribution of Milankovitch-band variance between the lower and middle Wilkins Peak Member across a range of temporally calibrated elemental intensity records. Spectral analysis of the lower Wilkins Peak Member shows strong short eccentricity, obliquity, precession, and sub-Milankovitch−scale variability, while the middle Wilkins Peak Member shows strong eccentricity variability and reduced power at higher frequencies. This transition coincides with a dramatic decline in the number and volume of evaporite beds. We attribute this shift to a change in the Wilkins Peak Member depositional transfer function caused by evolving basin morphology, which directly influenced the preservation of bedded evaporite as the paleolake developed from a deeper, meromictic lake to a shallower, holomictic lake. The loss of bedded evaporite, combined with secondary evaporite growth, results in reduced obliquity- and precession-band power and enhanced eccentricity-band power in the stratigraphic record. These results underscore the need for careful integration of basin and depositional system history with cyclostratigraphic interpretation of the dominant astronomical signals preserved in the stratigraphic archive. 
    more » « less
  3. The Wilkins Peak Member (WPM) of the Green River Formation in Wyoming, USA, comprises alternating lacustrine and alluvial strata that preserve a record of terrestrial climate during the early Eocene climatic optimum. We use a Bayesian framework to develop age-depth models for three sites, based on new 40Ar/39Ar sanidine and 206Pb/238U zircon ages from seven tuffs. The new models provide two- to ten-fold increases in temporal resolution compared to previous radioisotopic age models, confirming eccentricity-scale pacing of WPM facies, and permitting their direct comparison to astronomical solutions. Starting at ca. 51 Ma, the median ages for basin-wide flooding surfaces atop six successive alluvial marker beds coincide with short eccentricity maxima in the astronomical solutions. These eccentricity maxima have been associated with hyperthermal events recorded in marine strata during the early Eocene. WPM strata older than ca. 51 Ma do not exhibit a clear relationship to the eccentricity solutions, but accumulated 31%−35% more rapidly, suggesting that the influence of astronomical forcing on sedimentation was modulated by basin tectonics. Additional high-precision radioisotopic ages are needed to reduce the uncertainty of the Bayesian model, but this approach shows promise for unambiguous evaluation of the phase relationship between alluvial marker beds and theoretical eccentricity solutions. 
    more » « less
  4. Abstract

    The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum‐ and yttrium‐based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short‐range CDW in bismuth‐based cuprates. Here, high‐resolution resonant inelastic x‐ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2Sr2 −xLaxCuO6 + δ. Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real‐space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°‐rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates.

     
    more » « less
  5. null (Ed.)
    Abstract The Eocene Huitrera Formation of northwestern Patagonia, Argentina, is renowned for its diverse, informative, and outstandingly preserved fossil biotas. In northwest Chubut Province, at the Laguna del Hunco locality, this unit includes one of the most diverse fossil floras known from the Eocene, as well as significant fossil insects and vertebrates. It also includes rich fossil vertebrate faunas at the Laguna Fría and La Barda localities. Previous studies of these important occurrences have provided relatively little sedimentological detail, and radioisotopic age constraints are relatively sparse and in some cases obsolete. Here, we describe five fossiliferous lithofacies deposited in four terrestrial depositional environments: lacustrine basin floor, subaerial pyroclastic plain, vegetated, waterlogged pyroclastic lake margin, and extracaldera incised valley. We also report several new 40Ar/39Ar age determinations. Among these, the uppermost unit of the caldera-forming Ignimbrita Barda Colorada yielded a 40Ar/39Ar age of 52.54 ± 0.17 Ma, ∼6 m.y. younger than previous estimates, which demonstrates that deposition of overlying fossiliferous lacustrine strata (previously constrained to older than 52.22 ± 0.22 Ma) must have begun almost immediately on the subsiding ignimbrite surface. A minimum age for Laguna del Hunco fossils is established by an overlying ignimbrite with an age of 49.19 ± 0.24 Ma, confirming that deposition took place during the early Eocene climatic optimum. The Laguna Fría mammalian fauna is younger, constrained between a valley-filling ignimbrite and a capping basalt with 40Ar/39Ar ages of 49.26 ± 0.30 Ma and 43.50 ± 1.14 Ma, respectively. The latter age is ∼4 m.y. younger than previously reported. These new ages more precisely define the age range of the Laguna Fría and La Barda faunas, allowing greatly improved understanding of their positions with respect to South American mammal evolution, climate change, and geographic isolation. 
    more » « less
  6. null (Ed.)
    ABSTRACT The Green River Formation preserves an extraordinary archive of terrestrial paleoclimate during the Early Eocene Climatic Optimum (EECO; ∼ 53–50 Ma), expressing multiple scales of sedimentary cyclicity previously interpreted to reflect annual to Milankovitch-scale forcing. Here we utilize X-ray fluorescence (XRF) core scanning and micro X-ray fluorescence (micro-XRF) scanning in combination with radioisotopic age data to evaluate a rock core record of laminated oil shale and carbonate mudstone from Utah's Uinta Basin, with the parallel objectives of elucidating the paleo-environmental significance of the sedimentary rhythms, testing a range of forcing hypotheses, and evaluating potential linkages between high- and low-frequency forcing. This new assessment reveals that the ∼ 100-μm-scale laminae—the most fundamental rhythm of the Green River Formation—are most strongly expressed by variations in abundance of iron and sulfur. We propose that these variations reflect changes in redox state, consistent with annual stratification of the lake. In contrast to previous studies, no support was found for ENSO or sunspot cycles. However, millimeter- to centimeter-scale rhythms—temporally constrained to the decadal to centennial scale—are strongly expressed as alternations in the abundance of silicate- versus carbonate-associated elements (e.g., Al and Si vs. Ca), suggesting changes in precipitation and sediment delivery to the paleo-lake. Variations also occur at the meter scale, defining an approximate 4 m cycle interpreted to reflect precession. We also identify punctuated intervals, associated principally with one phase of the proposed precession cycle, where Si disconnects from the silicate input. We propose an alternative authigenic or biogenic Si source for these intervals, which reflects periods of enhanced productivity. This result reveals how long-term astronomical forcings can influence short-term processes, yielding insight into decadal- to millennial-scale terrestrial climate change in the Eocene greenhouse earth. 
    more » « less