skip to main content


Search for: All records

Creators/Authors contains: "Wang, H-F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. ABSTRACT

    We report the phase-connected timing ephemeris, polarization pulse profiles, Faraday rotation measurements, and Rotating-Vector-Model (RVM) fitting results of 12 millisecond pulsars (MSPs) discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in the Commensal Radio Astronomy FAST survey (CRAFTS). The timing campaigns were carried out with FAST and Arecibo over 3 yr. 11 of the 12 pulsars are in neutron star–white dwarf binary systems, with orbital periods between 2.4 and 100 d. 10 of them have spin periods, companion masses, and orbital eccentricities that are consistent with the theoretical expectations for MSP–Helium white dwarf (He WD) systems. The last binary pulsar (PSR J1912−0952) has a significantly smaller spin frequency and a smaller companion mass, the latter could be caused by a low orbital inclination for the system. Its orbital period of 29 d is well within the range of orbital periods where some MSP–He WD systems have shown anomalous eccentricities, however, the eccentricity of PSR J1912−0952 is typical of what one finds for the remaining MSP–He WD systems.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We perform analysis of the 3D kinematics of Milky Way disc stars in mono-age populations. We focus on stars between Galactocentric distances of R = 6 and 14  kpc, selected from the combined LAMOST Data Release 4 (DR4) red clump giant stars and Gaia DR2 proper motion catalogue. We confirm the 3D asymmetrical motions of recent works and provide time tagging of the Galactic outer disc asymmetrical motions near the anticentre direction out to Galactocentric distances of 14 kpc. Radial Galactocentric motions reach values up to 10 km s−1, depending on the age of the population, and present a north–south asymmetry in the region corresponding to density and velocity substructures that were sensitive to the perturbations in the early 6  Gyr. After that time, the disc stars in this asymmetrical structure have become kinematically hotter, and are thus not sensitive to perturbations, and we find the structure is a relatively younger population. With quantitative analysis, we find stars both above and below the plane at R ≳ 9 kpc that exhibit bending mode motions of which the sensitive duration is around 8  Gyr. We speculate that the in-plane asymmetries might not be mainly caused by a fast rotating bar, intrinsically elliptical outer disc, secular expansion of the disc, or streams. Spiral arm dynamics, out-of-equilibrium models, minor mergers or others are important contributors. Vertical motions might be dominated by bending and breathing modes induced by complicated inner or external perturbers. It is likely that many of these mechanisms are coupled together. 
    more » « less