skip to main content


Search for: All records

Creators/Authors contains: "Wang, Hai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Hydrodynamical interaction in circumbinary discs (CBDs) plays a crucial role in various astrophysical systems, ranging from young stellar binaries to supermassive black hole binaries in galactic centres. Most previous simulations of binary-disc systems have adopted locally isothermal equation of state. In this study, we use the grid-based code Athena++ to conduct a suite of two-dimensional viscous hydrodynamical simulations of circumbinary accretion on a Cartesian grid, resolving the central cavity of the binary. The gas thermodynamics is treated by thermal relaxation towards an equilibrium temperature (based on the constant − β cooling ansatz, where β is the cooling time in units of the local Keplerian time). Focusing on equal mass, circular binaries in CBDs with (equilibrium) disc aspect ratio H/R = 0.1, we find that the cooling of the disc gas significantly influences the binary orbital evolution, accretion variability, and CBD morphology, and the effect depends sensitively on the disc viscosity prescriptions. When adopting a constant kinematic viscosity, a finite cooling time (β ≳ 0.1) leads to a binary inspiral as opposed to an outspiral and the CBD cavity becomes more symmetric. When adopting a dynamically varying α-viscosity, binary inspiral only occurs within a narrow range of cooling time (corresponding to β around 0.5).

     
    more » « less
  2. Abstract

    Hydrodynamical interactions between binaries and circumbinary disks (CBDs) play an important role in a variety of astrophysical systems, from young stellar binaries to supermassive black hole binaries. Previous simulations of CBDs have mostly employed locally isothermal equations of state. We carry out 2D viscous hydrodynamic simulations of CBDs around equal-mass, circular binaries, treating the gas thermodynamics by thermal relaxation toward equilibrium temperature (the constant-βcooling ansatz, whereβis the cooling time in units of the local Keplerian time). As an initial study, we use the grid-based codeAthena++on a polar grid, covering an extended disk outside the binary co-orbital region. We find that with a longer cooling time, the accretion variability is gradually suppressed, and the morphology of the CBD becomes more symmetric. The disk also shows evidence of hysteresis behavior depending on the initial conditions. Gas cooling also affects the rate of angular momentum transfer between the binary and the CBD, where given our adopted disk thickness and viscosity (H/r∼ 0.1 andα∼ 0.1), the binary orbit expands while undergoing accretion for mostβvalues between 0 and 4.0 except over a narrow range of intermediateβvalues. The validity of using a polar grid excising the central domain is also discussed.

     
    more » « less
  3. Abstract

    We present a symmetry-based systematic approach to explore the structural and compositional richness of two-dimensional materials. We use a ‘combinatorial engine’ that constructs candidate compounds by occupying all possible Wyckoff positions for a certain space group with combinations of chemical elements. These combinations are restricted by imposing charge neutrality and the Pauling test for electronegativities. The structures are then pre-optimized with a specially crafted universal neural-network force-field, before a final step of geometry optimization using density-functional theory is performed. In this way we unveil an unprecedented variety of two-dimensional materials, covering the whole periodic table in more than 30 different stoichiometries of form AnBmor AnBmCk. Among the discovered structures, we find examples that can be built by decorating nearly all Platonic and Archimedean tessellations as well as their dual Laves or Catalan tilings. We also obtain a rich, and unexpected, polymorphism for some specific compounds. We further accelerate the exploration of the chemical space of two-dimensional materials by employing machine-learning-accelerated prototype search, based on the structural types discovered in the systematic search. In total, we obtain around 6500 compounds, not present in previous available databases of 2D materials, with a distance to the convex hull of thermodynamic stability smaller than 250 meV/atom.

     
    more » « less
  4. Free, publicly-accessible full text available June 1, 2024
  5. null (Ed.)
  6. null (Ed.)