skip to main content


Search for: All records

Creators/Authors contains: "Wang, J. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aims. HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ∼10 au. Long-term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system. Methods. Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. Results. We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ∼50−100 μarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7$ ^{+1.2}_{-1.0} $ M Jup and an orbital separation of 3.53$ ^{+0.08}_{-0.06} $ au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a “hybrid sequence” (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c. Conclusions. In addition to using long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2−4 au. 
    more » « less
  2. Strain-sensitive Ba x Sr 1− x TiO 3 perovskite systems are widely used because of their superior nonlinear dielectric behaviors. In this research, new heterostructures including paraelectric Ba 0.5 Sr 0.5 TiO 3 (BSTO) and ferroelectric BaTiO 3 (BTO) materials were epitaxially fabricated on flexible muscovite substrate. Through simple bending, the application of mechanical force can regulate the dielectric constant of BSTO from −77 to 36% and the channel current of BTO-based ferroelectric field effect transistor by two orders. The detailed mechanism was studied through the exploration of phase transition and determination of band structure. In addition, the phase-field simulations were implemented to provide theoretical support. This research opens a new avenue for mechanically controllable components based on high-quality oxide heteroepitaxy. 
    more » « less
  3. Aims. Photometric monitoring of β Pic in 1981 showed anomalous fluctuations of up to 4% over several days, consistent with foreground material transiting the stellar disk. The subsequent discovery of the gas giant planet β Pic b and the predicted transit of its Hill sphere to within a 0.1 au projected separation of the planet provided an opportunity to search for the transit of a circumplanetary disk (CPD) in this 21 ± 4 Myr-old planetary system. We aim to detect, or put an upper limit on, the density and nature of the material in the circumplanetary environment of the planet via the continuous photometric monitoring of the Hill sphere transit that occurred in 2017 and 2018. Methods. Continuous broadband photometric monitoring of β Pic requires ground-based observatories at multiple longitudes to provide redundancy and to provide triggers for rapid spectroscopic follow-up. These include the dedicated β Pic monitoring bRing observatories in Sutherland and Siding Springs, the ASTEP400 telescope at Concordia, and the space observatories BRITE and the Hubble Space Telescope (HST). We search the combined light curves for evidence of short-period transient events caused by rings as well as for longer-term photometric variability due to diffuse circumplanetary material. Results. We find no photometric event that matches with the event seen in November 1981, and there is no systematic photometric dimming of the star as a function of the Hill sphere radius. Conclusions. We conclude that the 1981 event was not caused by the transit of a CPD around β Pic b. The upper limit on the long-term variability of β Pic places an upper limit of 1.8 × 10 22 g of dust within the Hill sphere (comparable to the ~100 km radius asteroid 16 Psyche). Circumplanetary material is either condensed into a disk that does not transit β Pic, condensed into a disk with moons that has an obliquity that does not intersect with the path of β Pic behind the Hill sphere, or is below our detection threshold. This is the first time that a dedicated international campaign has mapped the Hill sphere transit of an extrasolar gas giant planet at 10 au. 
    more » « less
  4. null (Ed.)
  5. Abstract

    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector.

     
    more » « less