skip to main content


Search for: All records

Creators/Authors contains: "Wang, Jiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Sugar translocation between cells and between subcellular compartments in plants requires either plasmodesmata or a diverse array of sugar transporters. Interactions between plants and associated microorganisms also depend on sugar transporters. The sugars will eventually be exported transporter (SWEET) family is made up of conserved and essential transporters involved in many critical biological processes. The functional significance and small size of these proteins have motivated crystallographers to successfully capture several structures of SWEETs and their bacterial homologs in different conformations. These studies together with molecular dynamics simulations have provided unprecedented insights into sugar transport mechanisms in general and into substrate recognition of glucose and sucrose in particular. This review summarizes our current understanding of the SWEET family, from the atomic to the whole-plant level. We cover methods used for their characterization, theories about their evolutionary origins, biochemical properties, physiological functions, and regulation. We also include perspectives on the future work needed to translate basic research into higher crop yields. 
    more » « less
  3. Abstract

    Macrocycles are unique molecular structures extensively used in the design of catalysts, therapeutics and supramolecular assemblies. Among all reactions reported to date, systems that can produce macrocycles in high yield under high reaction concentrations are rare. Here we report the use of dynamic hindered urea bond (HUB) for the construction of urea macrocycles with very high efficiency. Mixing of equal molar diisocyanate and hindered diamine leads to formation of macrocycles with discrete structures in nearly quantitative yields under high concentration of reactants. The bulkyN-tert-butyl plays key roles to facilitate the formation of macrocycles, providing not only the kinetic control due to the formation of the cyclization-promotingcisC = O/tert-butyl conformation, but also possibly the thermodynamic stabilization of macrocycles with weak association interactions. The bulkyN-tert-butyl can be readily removed by acid to eliminate the dynamicity of HUB and stabilize the macrocycle structures.

     
    more » « less
  4. We consider the problem of using an autoregressive (AR) approximation to estimate the spectral density function and then × nautocovariance matrix based on stationary dataX1, … , Xn. The consistency of the autoregressive spectral density estimator has been proven since the 1970s under a linearity assumption. We extend these ideas to the nonlinear setting, and give an application to estimating then × nautocovariance matrix. Under mild assumptions on the underlying dependence structure and the orderpof the fittedAR(p) model, we are able to show that the autoregressive spectral estimate and the associated AR‐based autocovariance matrix estimator are consistent. We are also able to establish an explicit bound on the rate of convergence of the proposed estimators.

     
    more » « less
  5. null (Ed.)
  6. Abstract

    While ketones are among the most versatile functional groups, their synthesis remains reliant upon reactive and low‐abundance starting materials. In contrast, amide formation is the most‐used bond‐construction method in medicinal chemistry because the chemistry is reliable and draws upon large and diverse substrate pools. A new method for the synthesis of ketones is presented here that draws from the same substrates used for amide bond synthesis: amines and carboxylic acids. A nickel terpyridine catalyst couples N‐alkyl pyridinium salts with in situ formed carboxylic acid fluorides or 2‐pyridyl esters under reducing conditions (Mn metal). The reaction has a broad scope, as demonstrated by the synthesis of 35 different ketones bearing a wide variety of functional groups with an average yield of 60±16 %. This approach is capable of coupling diverse substrates, including pharmaceutical intermediates, to rapidly form complex ketones.

     
    more » « less
  7. Abstract

    While ketones are among the most versatile functional groups, their synthesis remains reliant upon reactive and low‐abundance starting materials. In contrast, amide formation is the most‐used bond‐construction method in medicinal chemistry because the chemistry is reliable and draws upon large and diverse substrate pools. A new method for the synthesis of ketones is presented here that draws from the same substrates used for amide bond synthesis: amines and carboxylic acids. A nickel terpyridine catalyst couples N‐alkyl pyridinium salts with in situ formed carboxylic acid fluorides or 2‐pyridyl esters under reducing conditions (Mn metal). The reaction has a broad scope, as demonstrated by the synthesis of 35 different ketones bearing a wide variety of functional groups with an average yield of 60±16 %. This approach is capable of coupling diverse substrates, including pharmaceutical intermediates, to rapidly form complex ketones.

     
    more » « less