skip to main content


Search for: All records

Creators/Authors contains: "Wang, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Tensegrity robots, composed of rigid rods and flexible cables, exhibit high strength-to-weight ratios and significant deformations, which enable them to navigate unstructured terrains and survive harsh impacts. They are hard to control, however, due to high dimensionality, complex dynamics, and a coupled architecture. Physics-based simulation is a promising avenue for developing locomotion policies that can be transferred to real robots. Nevertheless, modeling tensegrity robots is a complex task due to a substantial sim2real gap. To address this issue, this paper describes a Real2Sim2Real (R2S2R) strategy for tensegrity robots. This strategy is based on a differentiable physics engine that can be trained given limited data from a real robot. These data include offline measurements of physical properties, such as mass and geometry for various robot components, and the observation of a trajectory using a random control policy. With the data from the real robot, the engine can be iteratively refined and used to discover locomotion policies that are directly transferable to the real robot. Beyond the R2S2R pipeline, key contributions of this work include computing non-zero gradients at contact points, a loss function for matching tensegrity locomotion gaits, and a trajectory segmentation technique that avoids conflicts in gradient evaluation during training. Multiple iterations of the R2S2R process are demonstrated and evaluated on a real 3-bar tensegrity robot. 
    more » « less
    Free, publicly-accessible full text available October 3, 2024
  3. To obtain thorough understandings of precipitation process in heat-treatable Mg-Ca-Zn alloy, we revisited the precipitation process of a Mg-0.3Ca-0.6 Zn (at.%) dilute alloy during isothermal aging at 200 °C using an aberration-corrected scanning transmission electron microscope, atom probe tomography, and first-principles calculations. The monolayer G.P. zones form on the (0002)α plane in the peak-aged condition and transform into tri-atomic layer η'' and η' plates with a thickness of a single unit-cell height. The η' plates, then, form in pairs and stacks with energetically favorable 4–5 atomic layers of pure magnesium between the plates. While such a transformation path is similar to that seen in Mg-RE-Zn alloys (RE: rare-earth elements), the unique structure of coarse η1 plates that precipitate after the η' plates leads to a different precipitate microstructure evolution from the Mg-RE-Zn system. The η1 phase (Mg7Ca2Zn3) is unevenly distributed in the matrix after 100 h of aging and finally evolves to the equilibrium η phase (Mg10Ca3Zn6) phase with a hexagonal structure. First-principles calculations of energetics were performed to further identify the crystal structure and stability of the precipitates, supporting the following new precipitation sequence: S.S.S.S. → G.P. zones → η'' → η' → η' pairs and stacks / η1 → η 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. We report on a total of 310 samples from marine sediments drilled in the Indian Ocean that were analyzed for glass shard compositions. Samples are mainly from International Ocean Discovery Program Expeditions 353 and 362 but are complemented by samples from Expedition 354; Ocean Drilling Program Legs 183, 121, 120, 119, 116, and 115; and Deep Sea Drilling Project Leg 22. We performed 4327 successful single glass shard analyses with the electron microprobe for major element compositions and conducted 937 successful single analyses with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for trace element compositions on individual glass shards previously measured with the electron microprobe. In total, we were able to measure glass compositions for 254 samples. Of all the samples, 235 can be classified as tephra layers containing pyroclasts as the predominant component in their clast inventory between the 63 and 125 µm grain size fraction, often exceeding 90 vol%. The compositions of the Indian Ocean marine tephras range from basalt to rhyolite and from basaltic trachyandesite to trachyte and fall into the calc-alkaline, K-rich calc-alkaline, and shoshonitic magmatic series. 
    more » « less
    Free, publicly-accessible full text available April 4, 2024
  5. ABSTRACT

    The evolutionary sequence for high-mass star formation starts with massive starless clumps that go on to form protostellar, young stellar objects and then compact H ii regions. While there are many examples of the three later stages, the very early stages have proved to be elusive. We follow-up a sample of 110 mid-infrared dark clumps selected from the ATLASGAL catalogue with the IRAM telescope in an effort to identify a robust sample of massive starless clumps. We have used the HCO+ and HNC (1-0) transitions to identify clumps associated with infall motion and the SiO (2-1) transition to identity outflow candidates. We have found blue asymmetric line profile in 65 per cent of the sample, and have measured the infall velocities and mass infall rates (0.6–36 × 10−3 M⊙ yr−1) for 33 of these clumps. We find a trend for the mass infall rate decreasing with an increase of bolometric luminosity to clump mass, i.e. star formation within the clumps evolves. Using the SiO 2-1 line, we have identified good outflow candidates. Combining the infall and outflow tracers reveals that 67 per cent of quiescent clumps are already undergoing gravitational collapse or are associated with star formation; these clumps provide us with our best opportunity to determine the initial conditions and study the earliest stages of massive star formation. Finally, we provide an overview of a systematic high-resolution ALMA study of quiescent clumps selected that allows us to develop a detailed understanding of earliest stages and their subsequent evolution.

     
    more » « less
  6. We propose a nonlinear acoustic metasurface concept by exploiting the nonlinearity of locally resonant unit cells formed by curved beams. The analytical model is established to explore the nonlinear phenomenon, specifically the second-harmonic generation (SHG) of the nonlinear unit cell, and validated through numerical and experimental studies. By tailoring the phase gradient of the unit cells, nonlinear acoustic metasurfaces are developed to demultiplex different frequency components and achieve anomalous wavefront control of SHG in the transmitted region. To this end, we numerically demonstrate wave steering, wave focusing, and self-bending propagation. Our results show that the proposed nonlinear metasurface provides an effective and efficient platform to achieve significant SHG and separate different harmonic components for wavefront control of individual harmonics. Overall, this study offers an outlook to harness nonlinear effects for acoustic wavefront tailoring and develops potential toward advanced technologies to manipulate acoustic waves.

     
    more » « less
  7. Abstract Origami has great potential for creating deployable structures, however, most studies have focused on their static or kinematic features, while the complex and yet important dynamic behaviors of the origami deployment process have remained largely unexplored. In this research, we construct a dynamic model of a Miura origami sheet that captures the combined panel inertial and flexibility effects, which are otherwise ignored in rigid folding kinematic models but are critical in describing the dynamics of origami deployment. Results show that by considering these effects, the dynamic deployment behavior would substantially deviate from a nominal kinematic unfolding path. Additionally, the pattern geometries influence the effective structural stiffness, and it is shown that subtle changes can result in qualitatively different dynamic deployment behaviors. These differences are due to the multistability of the Miura origami sheet, where the structure may snap between its stable equilibria during the transient deployment process. Lastly, we show that varying the deployment rate can affect the dynamic deployment configuration. These observations are original and these phenomena have not and cannot be derived using traditional approaches. The tools and outcomes developed from this research enable a deeper understanding of the physics behind origami deployment that will pave the way for better designs of origami-based deployable structures, as well as extend our fundamental knowledge and expand our comfort zone beyond current practice. 
    more » « less
  8. Maier, P. ; Barela, S. ; Miller, V.M. ; Neelameggham, N.R. (Ed.)
    Mg-Sn and Mg-Zn alloys exhibit a strong age-hardening effect and have become promising bases for high-strength and low-cost Mg alloys. However, the atomic structures and phase stabilities of various precipitates and intermetallic compounds during the heat treatment in these systems remain unclear. Here we use a combined approach of first-principles calculations and cluster expansion (CE) to investigate the atomic structures and thermodynamic stabilities of the experimentally reported precipitates as well as orderings on the FCC and HCP lattices in Mg-Sn and Mg-Zn alloys. From the low energy structures searched by CE, potential Guinier–Preston (GP) zones are identified from preferred HCP orderings. The slow convergence for CE of HCP Mg-Zn, compared with that of Mg-Sn system, is attributed to the long-ranged interactions resulting from the larger lattice mismatch. This study could help design better age-hardened Mg alloys. 
    more » « less