skip to main content


Search for: All records

Creators/Authors contains: "Wang, Limin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 19, 2024
  2. Abstract

    Quantum-mechanical fluctuations between competing phases induce exotic collective excitations that exhibit anomalous behavior in transport and thermodynamic properties, and are often intimately linked to the appearance of unconventional Cooper pairing. High-temperature superconductivity, however, makes it difficult to assess the role of quantum-critical fluctuations in shaping anomalous finite-temperature physical properties. Here we report temperature-field scale invariance of non-Fermi liquid thermodynamic, transport, and Hall quantities in a non-superconducting iron-pnictide, Ba(Fe1/3Co1/3Ni1/3)2As2, indicative of quantum criticality at zero temperature and applied magnetic field. Beyond a linear-in-temperature resistivity, the hallmark signature of strong quasiparticle scattering, we find a scattering rate that obeys a universal scaling relation between temperature and applied magnetic fields down to the lowest energy scales. Together with the dominance of hole-like carriers close to the zero-temperature and zero-field limits, the scale invariance, isotropic field response, and lack of applied pressure sensitivity suggests a unique quantum critical system unhindered by a pairing instability.

     
    more » « less
  3. Abstract Background and Aims Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger (‘calcium signature’). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. Methods Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. Key Results Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. Conclusion DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex. 
    more » « less
  4. SUMMARY

    Extracellular ATP (eATP) is known to act as a danger signal in both plants and animals. In plants, eATP is recognized by the plasma membrane (PM)‐localized receptor P2K1 (LecRK‐I.9). Among the first measurable responses to eATP addition is a rapid rise in cytoplasmic free calcium levels ([Ca2+]cyt), which requires P2K1. However, the specific transporter/channel proteins that mediate this rise in [Ca2+]cytare unknown. Through a forward genetic screen, we identified an Arabidopsis ethylmethanesulfonate (EMS) mutant impaired in the [Ca2+]cytresponse to eATP. Positional cloning revealed that the mutation resided in thecngc6gene, which encodes cyclic nucleotide‐gated ion channel 6 (CNGC6). Mutation of theCNGC6gene led to a notable decrease in the PM inward Ca2+current in response to eATP. eATP‐induced mitogen‐activated protein kinase activation and gene expression were also significantly lower incngc6mutant plants. In addition,cngc6mutant plants were also more susceptible to the bacterial pathogenPseudomonas syringae. Taken together, our results indicate that CNGC6 plays a crucial role in mediating eATP‐induced [Ca2+]cytsignaling, as well as plant immunity.

     
    more » « less