skip to main content


Search for: All records

Creators/Authors contains: "Wang, Meng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nitrogen doped lutetium hydride has drawn global attention in the pursuit of room-temperature superconductivity near ambient pressure and temperature. However, variable synthesis techniques and uncertainty surrounding nitrogen concentration have contributed to extensive debate within the scientific community about this material and its properties. We used a solid-state approach to synthesize nitrogen doped lutetium hydride at high pressure and temperature (HPT) and analyzed the residual starting materials to determine its nitrogen content. High temperature oxide melt solution calorimetry determined the formation enthalpy of LuH1.96N0.02(LHN) from LuH2and LuN to be −28.4 ± 11.4 kJ/mol. Magnetic measurements indicated diamagnetism which increased with nitrogen content. Ambient pressure conductivity measurements observed metallic behavior from 5 to 350 K, and the constant and parabolic magnetoresistance changed with increasing temperature. High pressure conductivity measurements revealed that LHN does not exhibit superconductivity up to 26.6 GPa. We compressed LHN in a diamond anvil cell to 13.7 GPa and measured the Raman signal at each step, with no evidence of any phase transition. Despite the absence of superconductivity, a color change from blue to purple to red was observed with increasing pressure. Thus, our findings confirm the thermodynamic stability of LHN, do not support superconductivity, and provide insights into the origins of its diamagnetism.

     
    more » « less
    Free, publicly-accessible full text available March 19, 2025
  2. Free, publicly-accessible full text available May 1, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Using a starlike Be 6 Au 7 − cluster as a building block and following the bottom-up strategy, an intriguing two-dimensional (2D) binary s-block metal Be 2 Au monolayer with a P 6/ mmm space group was theoretically designed. Both the Be 6 Au 7 − cluster and the 2D monolayer are global minima featuring rule-breaking planar hexacoordinate motifs (anti-van't Hoff/Le Bel arrangement), and their high stabilities are attributed to good electron delocalization and electronic-stabilization-induced steric force. Strikingly, the Be 2 Au monolayer is a rare Dirac material with two perfect Dirac node-loops in the band structure and is a phonon-mediated superconductor with a critical temperature of 4.0 K. The critical temperature can be enhanced up to 11.0 K by applying compressive strain at only 1.6%. This study not only identifies a new binary s-block metal 2D material, namely Be 2 Au, which features planar hexacoordination, and a candidate superconducting material for further explorations, but also provides a new strategy to construct 2D materials with novel chemical bonding. 
    more » « less