skip to main content


Search for: All records

Creators/Authors contains: "Wang, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hypothesis Understanding the microscopic driving force of water wetting is challenging and important for design of materials. The relations between structure, dynamics and hydrogen bonds of interfacial water can be investigated using molecular dynamics simulations. Experiments and simulations Contact angles at the alumina (0001) and ( ) surfaces are studied using both classical molecular dynamics simulations and experiments. To test the superhydrophilicity, the free energy cost of removing waters near the interfaces are calculated using the density fluctuations method. The strength of hydrogen bonds is determined by their lifetime and geometry. Findings Both surfaces are superhydrophilic and the (0001) surface is more hydrophilic. Interactions between surfaces and interfacial waters promote a templating effect whereby the latter are aligned in a pattern that follows the underlying lattice of the surfaces. Translational and rotational dynamics of interfacial water molecules are slower than in bulk water. Hydrogen bonds between water and both surfaces are asymmetric, water-to-aluminol ones are stronger than aluminol-to-water ones. Molecular dynamics simulations eliminate the impacts of surface contamination when measuring contact angles and the results reveal the microscopic origin of the macroscopic superhydrophilicity of alumina surfaces: strong water-to-aluminol hydrogen bonds. 
    more » « less
  2. null (Ed.)
    The success of authorship attribution relies on the presence of linguistic features specific to individual authors. There is, however, limited research assessing to what extent authorial style remains constant when individuals switch from one writing modality to another. We measure the effect of writing mode on writing style in the context of authorship attribution research using a corpus of documents composed online (in a web browser) and documents composed offline using a traditional word processor. The results confirm the existence of a “mode effect” on authorial style. Online writing differs systematically from offline writing in terms of sentence length, word use, readability, and certain part-of-speech ratios. These findings have implications for research design and feature engineering in authorship attribution studies. 
    more » « less