skip to main content


Search for: All records

Creators/Authors contains: "Wang, Ruosong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less
  2. Offline reinforcement learning seeks to utilize offline (observational) data to guide the learning of (causal) sequential decision making strategies. The hope is that offline reinforcement learning coupled with function approximation methods (to deal with the curse of dimensionality) can provide a means to help alleviate the excessive sample complexity burden in modern sequential decision making problems. However, the extent to which this broader approach can be effective is not well understood, where the literature largely consists of sufficient conditions. This work focuses on the basic question of what are necessary representational and distributional conditions that permit provable sample-efficient offline reinforcement learning. Perhaps surprisingly, our main result shows that even if: i) we have realizability in that the true value function of \emph{every} policy is linear in a given set of features and 2) our off-policy data has good coverage over all features (under a strong spectral condition), any algorithm still (information-theoretically) requires a number of offline samples that is exponential in the problem horizon to non-trivially estimate the value of \emph{any} given policy. Our results highlight that sample-efficient offline policy evaluation is not possible unless significantly stronger conditions hold; such conditions include either having low distribution shift (where the offline data distribution is close to the distribution of the policy to be evaluated) or significantly stronger representational conditions (beyond realizability). 
    more » « less
  3. null (Ed.)
    We consider the communication complexity of a number of distributed optimization problems. We start with the problem of solving a linear system. Suppose there is a coordinator together with s servers P1, …, Ps, the i-th of which holds a subset A(i) x = b(i) of ni constraints of a linear system in d variables, and the coordinator would like to output an x ϵ ℝd for which A(i) x = b(i) for i = 1, …, s. We assume each coefficient of each constraint is specified using L bits. We first resolve the randomized and deterministic communication complexity in the point-to-point model of communication, showing it is (d2 L + sd) and (sd2L), respectively. We obtain similar results for the blackboard communication model. As a result of independent interest, we show the probability a random matrix with integer entries in {–2L, …, 2L} is invertible is 1–2−Θ(dL), whereas previously only 1 – 2−Θ(d) was known. When there is no solution to the linear system, a natural alternative is to find the solution minimizing the ℓp loss, which is the ℓp regression problem. While this problem has been studied, we give improved upper or lower bounds for every value of p ≥ 1. One takeaway message is that sampling and sketching techniques, which are commonly used in earlier work on distributed optimization, are neither optimal in the dependence on d nor on the dependence on the approximation ε, thus motivating new techniques from optimization to solve these problems. Towards this end, we consider the communication complexity of optimization tasks which generalize linear systems, such as linear, semi-definite, and convex programming. For linear programming, we first resolve the communication complexity when d is constant, showing it is (sL) in the point-to-point model. For general d and in the point-to-point model, we show an Õ(sd3L) upper bound and an (d2 L + sd) lower bound. In fact, we show if one perturbs the coefficients randomly by numbers as small as 2−Θ(L), then the upper bound is Õ(sd2L) + poly(dL), and so this bound holds for almost all linear programs. Our study motivates understanding the bit complexity of linear programming, which is related to the running time in the unit cost RAM model with words of O(log(nd)) bits, and we give the fastest known algorithms for linear programming in this model. Read More: https://epubs.siam.org/doi/10.1137/1.9781611975994.106 
    more » « less
  4. null (Ed.)
    Learning to plan for long horizons is a central challenge in episodic reinforcement learning problems. A fundamental question is to understand how the difficulty of the problem scales as the horizon increases. Here the natural measure of sample complexity is a normalized one: we are interested in the \emph{number of episodes} it takes to provably discover a policy whose value is eps near to that of the optimal value, where the value is measured by the \emph{normalized} cumulative reward in each episode. In a COLT 2018 open problem, Jiang and Agarwal conjectured that, for tabular, episodic reinforcement learning problems, there exists a sample complexity lower bound which exhibits a polynomial dependence on the horizon --- a conjecture which is consistent with all known sample complexity upper bounds. This work refutes this conjecture, proving that tabular, episodic reinforcement learning is possible with a sample complexity that scales only \emph{logarithmically} with the planning horizon. In other words, when the values are appropriately normalized (to lie in the unit interval), this results shows that long horizon RL is no more difficult than short horizon RL, at least in a minimax sense. Our analysis introduces two ideas: (i) the construction of an eps-net for near-optimal policies whose log-covering number scales only logarithmically with the planning horizon, and (ii) the Online Trajectory Synthesis algorithm, which adaptively evaluates all policies in a given policy class and enjoys a sample complexity that scales logarithmically with the cardinality of the given policy class. Both may be of independent interest. 
    more » « less
  5. Modern deep learning methods provide effective means to learn good representations. However, is a good representation itself sufficient for sample efficient reinforcement learning? This question has largely been studied only with respect to (worst-case) approximation error, in the more classical approximate dynamic programming literature. With regards to the statistical viewpoint, this question is largely unexplored, and the extant body of literature mainly focuses on conditions which permit sample efficient reinforcement learning with little understanding of what are necessary conditions for efficient reinforcement learning. This work shows that, from the statistical viewpoint, the situation is far subtler than suggested by the more traditional approximation viewpoint, where the requirements on the representation that suffice for sample efficient RL are even more stringent. Our main results provide sharp thresholds for reinforcement learning methods, showing that there are hard limitations on what constitutes good function approximation (in terms of the dimensionality of the representation), where we focus on natural representational conditions relevant to value-based, model-based, and policy-based learning. These lower bounds highlight that having a good (value-based, model-based, or policy-based) representation in and of itself is insufficient for efficient reinforcement learning, unless the quality of this approximation passes certain hard thresholds. Furthermore, our lower bounds also imply exponential separations on the sample complexity between 1) value-based learning with perfect representation and value-based learning with a good-but-not-perfect representation, 2) value-based learning and policy-based learning, 3) policy-based learning and supervised learning and 4) reinforcement learning and imitation learning. 
    more » « less
  6. null (Ed.)