skip to main content


Search for: All records

Creators/Authors contains: "Wang, Xinwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Interfacial thermal resistance plays a crucial role in efficient heat dissipation in modern electronic devices. It is critical to understand the interfacial thermal transport from both experiments and underlying physics. This review is focused on the transient opto-thermal Raman-based techniques for measuring the interfacial thermal resistance between 2D materials and substrate. This transient idea eliminates the use of laser absorption and absolute temperature rise data, therefore provides some of the highest level measurement accuracy and physics understanding. Physical concepts and perspectives are given for the time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), energy transport state-resolved Raman (ET-Raman), frequency domain ET-Raman (FET-Raman), as well as laser flash Raman and dual-wavelength laser flash Raman techniques. The thermal nonequilibrium between optical and acoustic phonons, as well as hot carrier diffusion must be considered for extremely small domain characterization of interfacial thermal resistance. To have a better understanding of phonon transport across material interfaces, we introduce a new concept termed effective interface energy transmission velocity. It is very striking that many reported interfaces have an almost constant energy transmission velocity over a wide temperature range. This physics consideration is inspired by the thermal reffusivity theory, which is effective for analyzing structure-phonon scattering. We expect the effective interface energy transmission velocity to give an intrinsic picture of the transmission of energy carriers, unaltered by the influence of their capacity to carry heat.

     
    more » « less
  2. Free, publicly-accessible full text available September 1, 2024
  3. Abstract

    Partial laser treatment is introduced to carbon‐based microfibers to generate excellent photon sensing capability without bias. This treatment brings about a Seebeck coefficient distribution along the sample's length, out of which a photovoltage with no external bias is generated and sensed. Using a line‐shaped laser spot, carbon microfiber (CMF), graphene microfiber (GMF), and graphene aerogel fiber (GAF) are investigated for their response to µm‐scale photon irradiation. A higher sensitivity for the incident photon is found for the GAF with no position sensitivity. More Seebeck coefficient variation is also observed for the GAF considering the amount of laser power used for the laser treatment. A weaker Seebeck coefficient spatial variation is observed for the GMF compared with the GAF. However, its photovoltage shows an abrupt magnitude change from the laser‐treated region to the non‐treated one. Despite the low spatial variation of the Seebeck coefficient for the CMF, it features an excellent and accurate position‐sensitive photoresponse with polarization change over a distance of ≈100 µm. Such unique capability prompts novel applications in using partially annealed CMF for sensing the position of optical beams at the microscale.

     
    more » « less
    Free, publicly-accessible full text available September 17, 2024
  4. Free, publicly-accessible full text available October 1, 2024
  5. Over the last two decades, with the fast development of micro/nanomaterials, including micro/nanoscale and micro/nanostructured materials, significant attention has been attracted to study the energy transport in them [...]

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. The temperature coefficient of resistivity (θT) of carbon-based materials is a critical property that directly determines their electrical response upon thermal impulses. It could have metal- (positive) or semiconductor-like (negative) behavior, depending on the combined temperature dependence of electron density and electron scattering. Its distribution in space is very difficult to measure and is rarely studied. Here, for the first time, we report that carbon-based micro/nanoscale structures have a strong non-uniform spatial distribution of θT. This distribution is probed by measuring the transient electro-thermal response of the material under extremely localized step laser heating and scanning, which magnifies the local θT effect in the measured transient voltage evolution. For carbon microfibers (CMFs), after electrical current annealing, θT varies from negative to positive from the sample end to the center with a magnitude change of >130% over <1 mm. This θT sign change is confirmed by directly testing smaller segments from different regions of an annealed CMF. For micro-thick carbon nanotube bundles, θT is found to have a relative change of >125% within a length of ∼2 mm, uncovering strong metallic to semiconductive behavior change in space. Our θT scanning technique can be readily extended to nm-thick samples with μm scanning resolution to explore the distribution of θT and provide a deep insight into the local electron conduction.

     
    more » « less
    Free, publicly-accessible full text available August 28, 2024
  7. Free, publicly-accessible full text available June 3, 2024