skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. Speech production is a complex human function requiring continuous feedforward commands together with reafferent feedback processing. These processes are carried out by distinct frontal and temporal cortical networks, but the degree and timing of their recruitment and dynamics remain poorly understood. We present a deep learning architecture that translates neural signals recorded directly from the cortex to an interpretable representational space that can reconstruct speech. We leverage learned decoding networks to disentangle feedforward vs. feedback processing. Unlike prevailing models, we find a mixed cortical architecture in which frontal and temporal networks each process both feedforward and feedback information in tandem. We elucidate the timing of feedforward and feedback–related processing by quantifying the derived receptive fields. Our approach provides evidence for a surprisingly mixed cortical architecture of speech circuitry together with decoding advances that have important implications for neural prosthetics.

     
    more » « less
    Free, publicly-accessible full text available October 17, 2024
  4. We develop a new 3D ambient noise tomography (3D ANT) method for geotechnical site characterization. It requires recording ambient noise fields using a 2D surface array of geophones, from which experimental crosscorrelation functions (CCFs) are then extracted and directly inverted to obtain an S-wave velocity ([Formula: see text]) structure. The method consists of a forward simulation using 3D P-SV elastic wave equations to compute the synthetic CCF and an adjoint-state inversion to match the synthetic CCFs to the experimental CCFs for extraction of [Formula: see text]. The main advantage of the presented method, as compared with conventional passive-source seismic methods using characteristics of Green’s function (GF), is that it does not require equal energy on both sides of each receiver pair or far-field wavefields to retrieve the true GF. Instead, the source power spectrum density is inverted during the analysis and incorporated into the forward simulation of the synthetic CCFs to account for source energy distribution. After testing on synthetic data, the 3D ANT method is applied to 3 h of ambient noise recordings at the Garner Valley Downhole Array (GVDA) site in California, using a surface array of 196 geophones placed on a 14 × 14 grid with 5 m spacing. The inverted 3D [Formula: see text] model is found to be consistent with previous invasive and noninvasive geotechnical characterization efforts at the GVDA site. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. Abstract

    Unrecognized deterioration of COVID-19 patients can lead to high morbidity and mortality. Most existing deterioration prediction models require a large number of clinical information, typically collected in hospital settings, such as medical images or comprehensive laboratory tests. This is infeasible for telehealth solutions and highlights a gap in deterioration prediction models based on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the patient’s home. In this study, we develop and compare two prognostic models that predict if a patient will experience deterioration in the forthcoming 3 to 24 h. The models sequentially process routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. These models are also provided with basic patient information, including sex, age, vaccination status, vaccination date, and status of obesity, hypertension, or diabetes. The difference between the two models is the way that the temporal dynamics of the vital signs are processed. Model #1 utilizes a temporally-dilated version of the Long-Short Term Memory model (LSTM) for temporal processes, and Model #2 utilizes a residual temporal convolutional network (TCN) for this purpose. We train and evaluate the models using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA. The convolution-based model outperforms the LSTM based model, achieving a high AUROC of 0.8844–0.9336 for 3 to 24 h deterioration prediction on a held-out test set. We also conduct occlusion experiments to evaluate the importance of each input feature, which reveals the significance of continuously monitoring the variation of the vital signs. Our results show the prospect for accurate deterioration forecast using a minimum feature set that can be relatively easily obtained using wearable devices and self-reported patient information.

     
    more » « less
  6. Abstract

    Interactions between electrons and phonons play a crucial role in quantum materials. Yet, there is no universal method that would simultaneously accurately account for strong electron-phonon interactions and electronic correlations. By combining methods of the variational quantum eigensolver and the variational non-Gaussian solver, we develop a hybrid quantum-classical algorithm suitable for this type of correlated systems. This hybrid method tackles systems with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates, as compared to purely electronic models. We benchmark our method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases, quantitatively consistent with exact diagonalization.

     
    more » « less
  7. Free, publicly-accessible full text available July 1, 2024
  8. Abstract

    The mechanism of unconventional superconductivity in correlated materials remains a great challenge in condensed matter physics. The recent discovery of superconductivity in infinite-layer nickelates, as an analog to high-Tccuprates, has opened a new route to tackle this challenge. By growing 8 nm Pr0.8Sr0.2NiO2films on the (LaAlO3)0.3(Sr2AlTaO6)0.7substrate, we successfully raise the superconducting onset transition temperatureTcin the widely studied SrTiO3-substrated nickelates from 9 K into 15 K, which indicates compressive strain is an efficient protocol to further enhance superconductivity in infinite-layer nickelates. Additionally, the x-ray absorption spectroscopy, combined with the first-principles and many-body simulations, suggest a crucial role of the hybridization between Ni and O orbitals in the unconventional pairing. These results also suggest the increase ofTcbe driven by the change of charge-transfer nature that would narrow the origin of general unconventional superconductivity in correlated materials to the covalence of transition metals and ligands.

     
    more » « less
  9. Abstract

    In plants, autophagy is a conserved process by which intracellular materials, including damaged proteins, aggregates, and entire organelles, are trafficked to the vacuole for degradation, thus maintaining cellular homeostasis. The past few decades have seen extensive research into the core components of the central autophagy machinery and their physiological roles in plant growth and development as well as responses to biotic and abiotic stresses. Moreover, several methods have been established for monitoring autophagic activities in plants, and these have greatly facilitated plant autophagy research. However, some of the methodologies are prone to misuse or misinterpretation, sometimes casting doubt on the reliability of the conclusions being drawn about plant autophagy. Here, we summarize the methods that are widely used for monitoring plant autophagy at the physiological, microscopic, and biochemical levels, including discussions of their advantages and limitations, to provide a guide for studying this important process.

     
    more » « less
  10. Electron-hole bound pairs, or excitons, are common excitations in semiconductors. They can spontaneously form and condense into a new insulating ground state—the so-called excitonic insulator—when the energy of electron-hole Coulomb attraction exceeds the band gap. In the presence of electron-phonon coupling, a periodic lattice distortion often concomitantly occurs. However, a similar structural transition can also be induced by electron-phonon coupling itself, therefore hindering the clean identification of bulk excitonic insulators (e.g., which instability is the driving force of the phase transition). Using high-resolution synchrotron x-ray diffraction and angle-resolved photoemission spectroscopy, we identify key electron-phonon coupling effects in a leading excitonic insulator candidate Ta 2 NiSe 5 . These include an extensive unidirectional lattice fluctuation and an electronic pseudogap in the normal state, as well as a negative electronic compressibility in the charge-doped broken-symmetry state. In combination with first principles and model calculations, we use the normal state electronic spectra to quantitatively determine the electron-phonon interaction vertex g and interband Coulomb interaction V in the minimal lattice model, the solution to which captures the experimental observations. Moreover, we show how the Coulomb and electron-phonon coupling effects can be unambiguously separated based on the solution to quantified microscopic models. Finally, we discuss how the strong lattice fluctuations enabled by low dimensionality relate to the unique electron-phonon interaction effects beyond the textbook Born-Oppenheimer approximation. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024