skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yufei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. . Computed Tomography (CT) takes X-ray measurements on the subjects to reconstruct tomographic images. As X-ray is radioactive, it is desirable to control the total amount of dose of X-ray for safety concerns. Therefore, we can only select a limited number of measurement angles and assign each of them limited amount of dose. Traditional methods such as compressed sensing usually randomly select the angles and equally distribute the allowed dose on them. In most CT reconstruction models, the emphasize is on designing effective image representations, while much less emphasize is on improving the scanning strategy. The simple scanning strategy of random angle selection and equal dose distribution performs well in general, but they may not be ideal for each individual subject. It is more desirable to design a personalized scanning strategy for each subject to obtain better reconstruction result. In this paper, we propose to use Reinforcement Learning (RL) to learn a personalized scanning policy to select the angles and the dose at each chosen angle for each individual subject. We first formulate the CT scanning process as an Markov Decision Process (MDP), and then use modern deep RL methods to solve it. The learned personalized scanning strategy not only leads to better reconstruction results, but also shows strong generalization to be combined with different reconstruction algorithms.

     
    more » « less
  2. Robotic manipulation of cloth remains challenging due to the complex dynamics of cloth, lack of a low-dimensional state representation, and self-occlusions. In contrast to previous model-based approaches that learn a pixel-based dynamics model or a compressed latent vector dynamics, we propose to learn a particle-based dynamics model from a partial point cloud observation. To overcome the challenges of partial observability, we infer which visible points are connected on the underlying cloth mesh. We then learn a dynamics model over this visible connectivity graph. Compared to previous learning-based approaches, our model poses strong inductive bias with its particle based representation for learning the underlying cloth physics; it can generalize to cloths with novel shapes; it is invariant to visual features; and the predictions can be more easily visualized. We show that our method greatly outperforms previous state-of-the-art model-based and model-free reinforcement learning methods in simulation. Furthermore, we demonstrate zero-shot sim-to-real transfer where we deploy the model trained in simulation on a Franka arm and show that the model can successfully smooth cloths of different materials, geometries and colors from crumpled configurations. 
    more » « less
  3. We address the problem of goal-directed cloth manipulation, a chal- lenging task due to the deformability of cloth. Our insight is that optical flow, a technique normally used for motion estimation in video, can also provide an effective representation for corresponding cloth poses across observation and goal images. We introduce FabricFlowNet (FFN), a cloth manipulation policy that leverages flow as both an input and as an action representation to improve performance. FabricFlowNet also elegantly switches between dual-arm and single- arm actions based on the desired goal. We show that FabricFlowNet significantly outperforms state-of-the-art model-free and model-based cloth manipulation policies. We also present real-world experiments on a bimanual system, demonstrating effective sim-to-real transfer. Finally, we show that our method generalizes when trained on a single square cloth to other cloth shapes, such as T-shirts and rectangular cloths. Video and other supplementary materials are available at: https://sites.google.com/view/fabricflownet. 
    more » « less
  4. null (Ed.)
    Photoinduced-RAFT polymerization is a technique of increasing interest due to the combination of control over polymerization that RAFT processes afford with the mild reaction conditions and spatial and temporal control of photochemical processes. Iniferter RAFT polymerization is an interesting subclass of photoinduced-RAFT that eliminates the need for an added photocatalyst, as the RAFT agent is directly excited by the photon source. Iniferter RAFT is a photochemical process leading to carbon–sulfur bond homolysis. In this work we find a surprising effect of substituents on the dithiobenzoate moiety of the chain transfer agent (CTA). Donating groups dramatically accelerate the iniferter process, while withdrawing groups retard the reaction substantially. This is interpreted though electrochemistry, since homolysis of the carbon–sulfur bond is associated with a formal oxidation of the thiocarbonylthio groups and reduction of the carbon to a radical. Through this study, the unique efficiency of 2-cyano-2-propyl 4-methoxydithiobenzoate (CPMODB) as an iniferter was uncovered, as this polymerization was found to progress at a drastically enhanced rate, even when compared to similar tris[2-phenylpyridinato-C 2 , N ]iridium( iii ) photocatalyzed polymerizations using an unsubstituted dithiobenzoate RAFT agent. 
    more » « less
  5. null (Ed.)
    Manipulating deformable objects has long been a challenge in robotics due to its high dimensional state representation and complex dynamics. Recent success in deep reinforcement learning provides a promising direction for learning to manipulate deformable objects with data driven methods. However, existing reinforcement learning benchmarks only cover tasks with direct state observability and simple low-dimensional dynamics or with relatively simple image-based environments, such as those with rigid objects. In this paper, we present SoftGym, a set of open-source simulated benchmarks for manipulating deformable objects, with a standard OpenAI Gym API and a Python interface for creating new environments. Our benchmark will enable reproducible research in this important area. Further, we evaluate a variety of algorithms on these tasks and highlight challenges for reinforcement learning algorithms, including dealing with a state representation that has a high intrinsic dimensionality and is partially observable. The experiments and analysis indicate the strengths and limitations of existing methods in the context of deformable object manipulation that can help point the way forward for future methods development. 
    more » « less