skip to main content


Search for: All records

Creators/Authors contains: "Wang, Yuhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Abstract

    Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction betweenAcinetobacterphage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the nativeAcinetobactertype IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.

     
    more » « less
  3. Free, publicly-accessible full text available October 1, 2024
  4. Abstract

    To understand diurnal variations in PM2.5composition and aerosol extract absorption, PM2.5samples were collected at intervals of 2 hr from 8:00 to 20:00 and 6 hr from 20:00 to 8:00 (the next day) in northern Nanjing, China, during the winter and summer of 2019–2020 and analyzed for bulk components, organic tracers, and light absorption of water and methanol extracts—a proxy measure of brown carbon (BrC). Diurnal patterns of measured species reflected the influences of primary emissions and atmospheric processes. Light absorption coefficients of water (Abs365,w) and methanol extracts (Abs365,m) at 365 nm shared a similar diurnal profile peaking at 18:00–20:00, generally following changes in biomass burning tracers. However, Abs365,w, Abs365,m, and their normalizations to organic aerosols increased at 14:00–16:00, earlier than that of levoglucosan in the late afternoon, which was attributed to secondarily formed BrC. The methanol extracts showed a less drastic decrease in light absorption at night than the water extracts and elevated absorption efficiency during 2:00–8:00. This is due to the fact that the water‐insoluble OC has a longer lifetime and stronger light absorption than the water‐soluble OC. According to the source apportionment results solved by positive matrix factorization (PMF), biomass burning and secondary formation were the major BrC sources in northern Nanjing, with an average total relative contribution of about 90%. Compared to previous studies, diurnal source cycles were added to the PMF simulations in this work by using time‐resolved speciation data, which avoided misclassification of BrC sources.

     
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  5. Abstract

    Nitrogen dioxide (NO2) and formaldehyde (HCHO) play vital roles in atmospheric photochemical processes. Their tropospheric vertical column density (TVCD) distributions have been monitored by satellite instruments. Evaluation of these observations is essential for applying these observations to study photochemistry. Assessing satellite products using observations at rural sites, where local emissions are minimal, is particularly useful due in part to the spatial homogeneity of trace gases. In this study, we evaluate OMI and TROPOMI NO2and HCHO TVCDs using multi‐axis differential optical absorption spectroscopy (MAX‐DOAS) measurements at a rural site in the east coast of the Shandong province, China in spring 2018 during the Ozone Photochemistry and Export from China Experiment (OPECE) measurement campaign. On days not affected by local burning, we found generally good agreement of NO2data after using consistent a priori profiles in satellite and MAX‐DOAS retrievals and accounting for low biases in scattering weights in one of the OMI products. In comparison, satellite HCHO products exhibited weaker correlations with MAX‐DOAS data, in contrast to satellite NO2products. However, TROPOMI HCHO products showed significantly better agreement with MAX‐DOAS measurements compared to OMI data. Furthermore, case studies of the vertical profiles measured by MAX‐DOAS on burning days revealed large enhancements of nitrous acid (HONO), NO2, and HCHO in the upper boundary layer, accompanied with considerable variability, particularly in HONO enhancements.

     
    more » « less
  6. Abstract A catastrophic heatwave struck North America (NA) in the summer of 2021, the underlying cause of which currently remains unclear. The reanalysis data (1980–2021) is analyzed to elucidate the mechanism modulating the summer heatwaves. We find the heatwaves over western NA tend to occur concurrently with quasi-barotropic ridges (QBTRs). The 2021 record-breaking heatwave, in particular, coincides with an extended eight-day QBTR event. The frequency of QBTRs is modulated by large-scale forcing. During the period of 1980–2000, it is correlated with the Arctic Oscillation. After 2000, however, the QBTR frequency is highly associated with sea ice variations. Specifically, the negative sea ice anomalies in the Chukchi Sea are usually associated with stronger net surface shortwave radiation and low cloud cover, triggering upward motion and a low-pressure center in the low- and mid-troposphere. The low pressure strengthens a stationary wave response, concomitant with two alternately high- and low-pressure centers, inducing more frequent QBTRs over western NA. These findings indicate that further Arctic sea ice loss under a warming climate will likely lead to more devastating heatwaves over western NA. 
    more » « less
  7. Abstract Background The spatiotemporal variation of observed trace gases (NO 2 , SO 2 , O 3 ) and particulate matter (PM 2.5 , PM 10 ) were investigated over cities of Yangtze River Delta (YRD) region including Nanjing, Hefei, Shanghai and Hangzhou. Furthermore, the characteristics of different pollution episodes, i.e., haze events (visibility < 7 km, relative humidity < 80%, and PM 2.5  > 40 µg/m 3 ) and complex pollution episodes (PM 2.5  > 35 µg/m 3 and O 3  > 160 µg/m 3 ) were studied over the cities of the YRD region. The impact of China clean air action plan on concentration of aerosols and trace gases is examined. The impacts of trans-boundary pollution and different meteorological conditions were also examined. Results The highest annual mean concentrations of PM 2.5 , PM 10 , NO 2 and O 3 were found for 2019 over all the cities. The annual mean concentrations of PM 2.5 , PM 10 , and NO 2 showed continuous declines from 2019 to 2021 due to emission control measures and implementation of the Clean Air Action plan over all the cities of the YRD region. The annual mean O 3 levels showed a decline in 2020 over all the cities of YRD region, which is unprecedented since the beginning of the China’s National environmental monitoring program since 2013. However, a slight increase in annual O 3 was observed in 2021. The highest overall means of PM 2.5 , PM 10 , SO 2 , and NO 2 were observed over Hefei, whereas the highest O 3 levels were found in Nanjing. Despite the strict control measures, PM 2.5 and PM 10 concentrations exceeded the Grade-1 National Ambient Air Quality Standards (NAAQS) and WHO (World Health Organization) guidelines over all the cities of the YRD region. The number of haze days was higher in Hefei and Nanjing, whereas the complex pollution episodes or concurrent occurrence of O 3 and PM 2.5 pollution days were higher in Hangzhou and Shanghai. The in situ data for SO 2 and NO 2 showed strong correlation with Tropospheric Monitoring Instrument (TROPOMI) satellite data. Conclusions Despite the observed reductions in primary pollutants concentrations, the secondary pollutants formation is still a concern for major metropolises. The increase in temperature and lower relative humidity favors the accumulation of O 3 , while low temperature, low wind speeds and lower relative humidity favor the accumulation of primary pollutants. This study depicts different air pollution problems for different cities inside a region. Therefore, there is a dire need to continuous monitoring and analysis of air quality parameters and design city-specific policies and action plans to effectively deal with the metropolitan pollution. 
    more » « less