skip to main content


Search for: All records

Creators/Authors contains: "Webster, Charles Edwin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 26, 2025
  2. In contrast to the reported CCC-NHC pincer ligands that contain normal N-heterocyclic carbenes (NHC), herein we report an imidazole-based abnormal NHC (aNHC) pincer ligand, CCC-aNHC. The CCC-aNHC pincer Pt complex with two aNHC donors was synthesized via the in situ metalation and transmetalation methodology. The 1,3-phenylene(bis-2-phenyl-3-butyl imidazolium) diiodide salt was reacted with Zr(NMe2)4 to generate a CCC-aNHC pincer zirconium complex in situ. It was transmetalated to Pt using [Pt(COD)Cl2]. Electrospray ionization of the Pt pincer complex [(BuCa‑iCa‑iCBu)-PtI] in acetonitrile generated an intense peak at m/z = 696.2375, which was assigned to the dinitrogen adduct [M−I+N2]+ of the cationic CCC-aNHC pincer Pt(II) complex [(BuCa‑iCa‑iCBu)Pt− N2]+, representing a rare example of the platinum dinitrogen organometallic complex. The super electron-donating ability of the pincer ligands with abnormal NHC enabled the cationic CCC-aNHC pincer Pt(II) complex to selectively bind N2 over MeCN in a first-order analysis. A collision-induced dissociation (CID) study was conducted on the N2 and MeCN adducts, suggesting that more energy was required to dissociate N2 than MeCN. A computational study suggested that the N2 adduct was kinetically stable in the gas phase whereas the MeCN adduct was thermodynamically preferred. The computational results reconciled the mass spectral data experiment with an attempt to isolate the N2 adduct. DFT computation suggested that N2 dissociation is more challenging due to higher energy transition states, and there is a competitive pathway of N2 tumbling within the coordination sphere of the Pt. This tumbling path is not available from the MeCN ligand due to ligand structural differences. 
    more » « less
    Free, publicly-accessible full text available February 26, 2025
  3. Monoligated and bis-ligated CCC-NHC pincer Fe complexes with n-butyl substituents have been synthesized by the Zr metalation/transmetalation route. Both the direct metalation/transmetalation and transmetalation from the isolated (BuCiCiCBu)ZrNMe2Cl2, 3, yielded the octahedrally coordinated Fe(III) bis-ligated complex [(BuCiCiCBu)2Fe]Cl, 2a. Transmetalation from in situ and isolated (BuCiCiCBu)ZrCl3, 5, in the presence of excess TMSCl and 1 equiv of the Fe source yielded the monoligated (BuCiCiCBu)FeCl2, 4. Conditions that convert [(BuCiCiCBu)2Fe]+, 2, to (BuCiCiCBu)FeCl2, 4, complex have been found. Characterization included 1H NMR, UV−visible, femtosecond transient absorption spectroscopies, TDDFT computations, and mass spectroscopy along with X-ray crystallographic structure determinations. 
    more » « less
    Free, publicly-accessible full text available February 12, 2025
  4. Free, publicly-accessible full text available September 19, 2024
  5. Free, publicly-accessible full text available May 5, 2024
  6. MOF NU-1000 was employed to host Ni tripodal complexes prepared from new organometallic precursors [HNi(κ4(E,P,P,P)-E(o-C 6 H 4 CH 2 PPh 2 ) 3 ], E = Si (Ni-1), Ge (Ni-2). The new heterogenous catalytic materials, Ni-1@NU-1000 and Ni-2@NU-1000 show the advantages of both homogenous and heterogeneous catalysts. They catalyze the hydroboration of aldehydes and ketones more efficiently than the homogenous Ni-1 and Ni-2, under aerobic conditions, and allowing recyclability of the catalyst. 
    more » « less
  7. Integration of polycyclic aromatic hydrocarbon (PAH) units into semi-fluorinated polymers affords high thermal stability and excellent processability for potential applications in optoelectronic, gas-separation, and advanced composites. Base-promoted step-growth polycondensation of commercial bisphenols with new triphenylene containing bis-trifluorovinyl ether (TFVE) monomers affords semi-fluorinated arylene vinylene ether (FAVE) polymers in good yields. The solution-processable polymers form tough transparent films and produce substitution dependent blue-light emission in solution with emission quantum yields ranging from 7.2–12% (in dichloromethane). Although predominantly amorphous with high glass transition temperatures ( T g ) ranging from 176–243 °C, powder X-ray diffraction studies show typical molecular diameter and pi-stacking reflections for triphenylene polymers. The polymers exhibited excellent thermal stability, solution photostability, and remarkable thermal oxidative photostability after heating at 250 °C for 24 h in air. Further, a model post-polymerization Scholl coupling afforded a novel semi-fluorinated hexabenzocoronene polymer with new optical properties. Time-dependent density functional theory (TD-DFT) computations were also performed using SMD (dichloromethane)- ω B97XD/BS1 (BS1 = 6-31G(d′) for C, H, O and F). This work demonstrated the synthesis and characterization of processable, blue-light emitting, thermally stable triphenylene enchained semi-fluorinated aryl ether polymers. 
    more » « less