skip to main content


Search for: All records

Creators/Authors contains: "Wechsler, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the discovery of six ultra-faint Milky Way satellites identified through matched-filter searches conducted using Dark Energy Camera (DECam) data processed as part of the second data release of the DECam Local Volume Exploration (DELVE) survey. Leveraging deep Gemini/GMOS-N imaging (for four candidates) as well as follow-up DECam imaging (for two candidates), we characterize the morphologies and stellar populations of these systems. We find that these candidates all share faint absolute magnitudes ( M V ≥ −3.2 mag) and old, metal-poor stellar populations ( τ > 10 Gyr, [Fe/H] < −1.4 dex). Three of these systems are more extended ( r 1/2 > 15 pc), while the other three are compact ( r 1/2 < 10 pc). From these properties, we infer that the former three systems (Boötes V, Leo Minor I, and Virgo II) are consistent with ultra-faint dwarf galaxy classifications, whereas the latter three (DELVE 3, DELVE 4, and DELVE 5) are likely ultra-faint star clusters. Using data from the Gaia satellite, we confidently measure the proper motion of Boötes V, Leo Minor I, and DELVE 4, and tentatively detect a proper-motion signal from DELVE 3 and DELVE 5; no signal is detected for Virgo II. We use these measurements to explore possible associations between the newly discovered systems and the Sagittarius dwarf spheroidal, the Magellanic Clouds, and the Vast Polar Structure, finding several plausible associations. Our results offer a preview of the numerous ultra-faint stellar systems that will soon be discovered by the Vera C. Rubin Observatory and highlight the challenges of classifying the faintest stellar systems. 
    more » « less
    Free, publicly-accessible full text available July 28, 2024
  2. Abstract

    We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete toMV∼ (−7, −10) mag for galaxies atD= (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of2.20.12+0.05Mpc, a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absoluteV-band magnitude of8.00.3+0.5magand an azimuthally averaged physical half-light radius of2.20.4+0.5kpc, making this one of the lowest surface brightness galaxies ever found withμ=32.3magarcsec2. This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.

     
    more » « less
  3. ABSTRACT

    We study the effect of magnification in the Dark Energy Survey Year 3 analysis of galaxy clustering and galaxy–galaxy lensing, using two different lens samples: a sample of luminous red galaxies, redMaGiC, and a sample with a redshift-dependent magnitude limit, MagLim. We account for the effect of magnification on both the flux and size selection of galaxies, accounting for systematic effects using the Balrog image simulations. We estimate the impact of magnification on the galaxy clustering and galaxy–galaxy lensing cosmology analysis, finding it to be a significant systematic for the MagLim sample. We show cosmological constraints from the galaxy clustering autocorrelation and galaxy–galaxy lensing signal with different magnifications priors, finding broad consistency in cosmological parameters in ΛCDM and wCDM. However, when magnification bias amplitude is allowed to be free, we find the two-point correlation functions prefer a different amplitude to the fiducial input derived from the image simulations. We validate the magnification analysis by comparing the cross-clustering between lens bins with the prediction from the baseline analysis, which uses only the autocorrelation of the lens bins, indicating that systematics other than magnification may be the cause of the discrepancy. We show that adding the cross-clustering between lens redshift bins to the fit significantly improves the constraints on lens magnification parameters and allows uninformative priors to be used on magnification coefficients, without any loss of constraining power or prior volume concerns.

     
    more » « less
  4. Free, publicly-accessible full text available October 20, 2024
  5. Abstract

    The Dark Energy Spectroscopic Instrument (DESI) is carrying out a five-year survey that aims to measure the redshifts of tens of millions of galaxies and quasars, including 8 million luminous red galaxies (LRGs) in the redshift range 0.4 <z≲ 1.0. Here we present the selection of the DESI LRG sample and assess its spectroscopic performance using data from Survey Validation (SV) and the first two months of the Main Survey. The DESI LRG sample, selected usingg,r,z, andW1 photometry from the DESI Legacy Imaging Surveys, is highly robust against imaging systematics. The sample has a target density of 605 deg−2and a comoving number density of 5 × 10−4h3Mpc−3in 0.4 <z< 0.8; this is a significantly higher density than previous LRG surveys (such as SDSS, BOSS, and eBOSS) while also extending toz∼ 1. After applying a bright star veto mask developed for the sample, 98.9% of the observed LRG targets yield confident redshifts (with a catastrophic failure rate of 0.2% in the confident redshifts), and only 0.5% of the LRG targets are stellar contamination. The LRG redshift efficiency varies with source brightness and effective exposure time, and we present a simple model that accurately characterizes this dependence. In the appendices, we describe the extended LRG samples observed during SV.

     
    more » « less
  6. ABSTRACT

    We evaluate the consistency between lensing and clustering based on measurements from Baryon Oscillation Spectroscopic Survey combined with galaxy–galaxy lensing from Dark Energy Survey (DES) Year 3, Hyper Suprime-Cam Subaru Strategic Program (HSC) Year 1, and Kilo-Degree Survey (KiDS)-1000. We find good agreement between these lensing data sets. We model the observations using the Dark Emulator and fit the data at two fixed cosmologies: Planck (S8 = 0.83), and a Lensing cosmology (S8 = 0.76). For a joint analysis limited to large scales, we find that both cosmologies provide an acceptable fit to the data. Full utilization of the higher signal-to-noise small-scale measurements is hindered by uncertainty in the impact of baryon feedback and assembly bias, which we account for with a reasoned theoretical error budget. We incorporate a systematic inconsistency parameter for each redshift bin, A, that decouples the lensing and clustering. With a wide range of scales, we find different results for the consistency between the two cosmologies. Limiting the analysis to the bins for which the impact of the lens sample selection is expected to be minimal, for the Lensing cosmology, the measurements are consistent with A = 1; A = 0.91 ± 0.04 (A = 0.97 ± 0.06) using DES+KiDS (HSC). For the Planck case, we find a discrepancy: A = 0.79 ± 0.03 (A = 0.84 ± 0.05) using DES+KiDS (HSC). We demonstrate that a kinematic Sunyaev–Zeldovich-based estimate for baryonic effects alleviates some of the discrepancy in the Planck cosmology. This analysis demonstrates the statistical power of small-scale measurements; however, caution is still warranted given modelling uncertainties and foreground sample selection effects.

     
    more » « less
  7. ABSTRACT

    We use the small scales of the Dark Energy Survey (DES) Year-3 cosmic shear measurements, which are excluded from the DES Year-3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package baccoemu to accelerate the evaluation of the baryonic non-linear matter power spectrum. We design our analysis pipeline to focus on the constraints of the baryonic suppression effects, utilizing the implication given by a principal component analysis on the Fisher forecasts. Our constraint on the baryonic effects can then be used to better model and ameliorate the effects of baryons in producing cosmological constraints from the next-generation large-scale structure surveys. We detect the baryonic suppression on the cosmic shear measurements with a ∼2σ significance. The characteristic halo mass for which half of the gas is ejected by baryonic feedback is constrained to be $M_c \gt 10^{13.2} \, h^{-1} \, \mathrm{M}_{\odot }$ (95 per cent C.L.). The best-fitting baryonic suppression is $\sim 5{{\ \rm per\ cent}}$ at $k=1.0 \, {\rm Mpc}\ h^{-1}$ and $\sim 15{{\ \rm per\ cent}}$ at $k=5.0 \, {\rm Mpc} \ h^{-1}$. Our findings are robust with respect to the assumptions about the cosmological parameters, specifics of the baryonic model, and intrinsic alignments.

     
    more » « less