skip to main content


Search for: All records

Creators/Authors contains: "Wedal, Justin C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 17, 2024
  2. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less
  3. Electrochemical measurements on tris(cyclopentadienyl)thorium and uranium compounds in the +2, +3, and +4 oxidation states are reported with C 5 H 3 (SiMe 3 ) 2 , C 5 H 4 SiMe 3 , and C 5 Me 4 H ligands. The reduction potentials for both U and Th complexes trend with the electron donating abilities of the cyclopentadienyl ligand. Thorium complexes have more negative An( iii )/An( ii ) reduction potentials than the uranium analogs. Electrochemical measurements of isolated Th( ii ) complexes indicated that the Th( iii )/Th( ii ) couple was surprisingly similar to the Th( iv )/Th( iii ) couple in Cp′′-ligated complexes. This suggested that Th( ii ) complexes could be prepared from Th( iv ) precursors and this was demonstrated synthetically by isolation of directly from UV-visible spectroelectrochemical measurements and reactions of with elemental barium indicated that the thorium system undergoes sequential one electron transformations. 
    more » « less
  4. null (Ed.)
  5. Reduction of Cp′ 3 ThCl, Cp′ 3 ThBr, and Cp′ 3 ThI (Cp′ = C 5 H 4 SiMe 3 ) with potassium graphite generates dark blue solutions with reactivity and spectroscopic properties consistent with the formation of Cp′ 3 Th. The EPR and UV-visible spectra of the solutions are similar to those of crystallographically-characterized tris(cyclopentadienyl) Th( iii ) complexes: [C 5 H 3 (SiMe 3 ) 2 ] 3 Th, (C 5 Me 4 H) 3 Th, (C 5 t Bu 2 H 3 ) 3 Th, and (C 5 Me 5 ) 3 Th. Density functional theory (DFT) analysis indicates that the UV-visible spectrum is consistent with Cp′ 3 Th and not [Cp′ 3 ThBr] 1− . Although single crystals of Cp′ 3 Th have not been isolated, the blue solution reacts with Me 3 SiCl, I 2 , and HCCPh to afford products expected from Cp′ 3 Th, namely, Cp′ 3 ThCl, Cp′ 3 ThI, and Cp′ 3 Th(CCPh), respectively. Reactions with MeI give mixtures of Cp′ 3 ThI and Cp′ 3 ThMe. Evidence for further reduction of the blue solutions to a Cp′-ligated Th( ii ) complex has not been observed. The crystal structures of Cp′ 3 ThMe and (Cp′ 3 Th) 2 (μ-O) were also determined as part of these studies. 
    more » « less