skip to main content


Search for: All records

Creators/Authors contains: "Wei, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrons in earth's magnetotail are energized significantly both in the form of heating and in the form of acceleration to non-thermal energies. While magnetic reconnection is considered to play an important role in this energization, it still remains unclear how electrons are energized and how energy is partitioned between thermal and non-thermal components. Here, we show, based on in situ observations by NASA's magnetospheric multiscale mission combined with multi-component spectral fitting methods, that the average electron energy [Formula: see text] (or equivalently temperature) is substantially higher when the locally averaged electric field magnitude [Formula: see text] is also higher. While this result is consistent with the classification of “plasma-sheet” and “tail-lobe” reconnection during which reconnection is considered to occur on closed and open magnetic field lines, respectively, it further suggests that a stochastic Fermi acceleration in 3D, reconnection-driven turbulence is essential for the production and confinement of energetic electrons in the reconnection region. The puzzle is that the non-thermal power-law component can be quite small even when the electric field is large and the bulk population is significantly heated. The fraction of non-thermal electron energies varies from sample to sample between ∼20% and ∼60%, regardless of the electric field magnitude. Interestingly, these values of non-thermal fractions are similar to those obtained for the above-the-looptop hard x-ray coronal sources for solar flares. 
    more » « less
  2. Free, publicly-accessible full text available January 22, 2025
  3. Abstract

    Global simulations predict that the low‐latitude mantle may be an important pathway for the solar wind entry into the tail magnetosphere close to the current sheet when interplanetary magnetic field (IMF)Bydominates over IMFBz. To evaluate this entry mechanism in the near‐Earth tail (X ∼ −10–−20RE), we investigate the predictions from 3D global hybrid simulations as well as in situ observations by magnetospheric multiscale (MMS) spacecraft. The simulations predict that the low‐latitude mantle plasma can appear in the near‐Earth tail lobe extending inward approximately 5REfrom the flank magnetopause. The low‐latitude mantle plasma appears in the dawnside northern lobe and duskside southern lobe during positive IMFBy, while the opposite asymmetry is seen during negative IMFBy. After a change in the IMFBydirection arriving at the bow shock nose, it takes another ∼15–30 min for the asymmetry to completely reverse to the opposite sense in the near‐Earth tail. We present six MMS events in the tail lobe showing that the existence and absence of the low‐latitude mantle plasma is consistent with the predicted asymmetries. Statistical analysis of 5 years of MMS observations shows that the dependencies of the magnitudes of the lobe densities and tailward field‐aligned flow speeds on the IMFBydirections are consistent with the predicted contributions from the low‐latitude mantle plasma in the expected lobe regions.

     
    more » « less