skip to main content


Search for: All records

Creators/Authors contains: "Wei, Tzu-Chieh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many quantum algorithms are developed to evaluate eigenvalues for Hermitian matrices. However, few practical approach exists for the eigenanalysis of non-Hermintian ones, such as arising from modern power systems. The main difficulty lies in the fact that, as the eigenvector matrix of a general matrix can be non-unitary, solving a general eigenvalue problem is inherently incompatible with existing unitary-gate-based quantum methods. To fill this gap, this paper introduces a Variational Quantum Universal Eigensolver (VQUE), which is deployable on noisy intermediate scale quantum computers. Our new contributions include: (1) The first universal variational quantum algorithm capable of evaluating the eigenvalues of non-Hermitian matrices—Inspired by Schur’s triangularization theory, VQUE unitarizes the eigenvalue problem to a procedure of searching unitary transformation matrices via quantum devices; (2) A Quantum Process Snapshot technique is devised to make VQUE maintain the potential quantum advantage inherited from the original variational quantum eigensolver—With additional$$O(log_{2}{N})$$O(log2N)quantum gates, this method efficiently identifies whether a unitary operator is triangular with respect to a given basis; (3) Successful deployment and validation of VQUE on a real noisy quantum computer, which demonstrates the algorithm’s feasibility. We also undertake a comprehensive parametric study to validate VQUE’s scalability, generality, and performance in realistic applications.

     
    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available September 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. Given a loop or more generally 1-cycle r r of size L on a closed two-dimensional manifold or surface, represented by a triangulated mesh, a question in computational topology asks whether or not it is homologous to zero. We frame and tackle this problem in the quantum setting. Given an oracle that one can use to query the inclusion of edges on a closed curve, we design a quantum algorithm for such a homology detection with a constant running time, with respect to the size or the number of edges on the loop r r , requiring only a single usage of oracle. In contrast, classical algorithm requires \Omega(L) Ω ( L ) oracle usage, followed by a linear time processing and can be improved to logarithmic by using a parallel algorithm. Our quantum algorithm can be extended to check whether two closed loops belong to the same homology class. Furthermore, it can be applied to a specific problem in the homotopy detection, namely, checking whether two curves are not homotopically equivalent on a closed two-dimensional manifold. 
    more » « less