skip to main content


Search for: All records

Creators/Authors contains: "Weinberger, Alycia J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present resolved images of the inner disk component around HD 141569A using the Magellan adaptive optics system with the Clio2 1–5μm camera, offering a glimpse of a complex system thought to be in a short evolutionary phase between protoplanetary and debris disk stages. We use a reference star along with the Karhunen–Loéve image projection (KLIP) algorithm for point-spread function subtraction to detect the disk inward to about 0.″24 (∼25 au assuming a distance of 111 pc) at high signal-to-noise ratios atL(3.8μm),Ls(3.3μm), and narrowbandIce(3.1μm). We identify an arc or spiral arm structure at the southeast extremity, consistent with previous studies. We implement forward modeling with a simple disk model within the framework of a Markov Chain Monte Carlo sampler to better constrain the geometrical attributes and photometry using our KLIP-reduced disk images. We then leverage these modeling results to facilitate a comparison of the measured brightness in each passband to find a reduction in scattered light from the disk in theIcefilter, implying significant absorption due to water ice in the dust. Additionally, our best-fit disk models exhibit peak brightness in the southwestern, back-scattering region of the disk, which we suggest to be possible evidence of 3.3μm polycyclic aromatic hydrocarbon emission. However, we point out the need for additional observations with bluer filters and more complex modeling to confirm these hypotheses.

     
    more » « less
  2. ABSTRACT

    We present an analysis of spectroscopic data of the cool, highly magnetic, and polluted white dwarf 2MASS J0916−4215. The atmosphere of the white dwarf is dominated by hydrogen, but numerous spectral lines of magnesium, calcium, titanium, chromium, iron, and strontium, along with Li i, Na i, Al i, and K i lines, are found in the incomplete Paschen–Back regime, most visibly, in the case of Ca ii lines. Extensive new calculations of the Paschen–Back effect in several spectral lines are presented and results of the calculations are tabulated for the Ca ii H&K doublet. The abundance pattern shows a large lithium and strontium excess, which may be viewed as a signature of planetary debris akin to Earth’s continental crust accreted on to the star, although the scarcity of silicon indicates possible dilution in bulk Earth material. Accurate abundance measurements proved sensitive to the value of the broadening parameter due to collisions with neutral hydrogen ($\Gamma$H i), particularly in saturated lines such as the resonance lines of Ca i and Ca ii. We found that $\Gamma$H i if formulated with values from the literature could be overestimated by a factor of 10 in most resonance lines.

     
    more » « less
  3. Abstract

    We present observations and analyses of eight white dwarf stars (WDs) that have accreted rocky material from their surrounding planetary systems. The spectra of these helium-atmosphere WDs contain detectable optical lines of all four major rock-forming elements (O, Mg, Si, and Fe). This work increases the sample of oxygen-bearing WDs with parent body composition analyses by roughly 33%. To first order, the parent bodies that have been accreted by the eight WDs are similar to those of chondritic meteorites in relative elemental abundances and oxidation states. Seventy-five percent of the WDs in this study have observed oxygen excesses implying volatiles in the parent bodies with abundances similar to those of chondritic meteorites. Three WDs have oxidation states that imply more reduced material than found in CI chondrites, indicating the possible detection of Mercury-like parent bodies, but are less constrained. These results contribute to the recurring conclusion that extrasolar rocky bodies closely resemble those in our solar system, and do not, as a whole, yield unusual or unique compositions.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. Abstract Accreting protoplanets are windows into planet formation processes, and high-contrast differential imaging is an effective way to identify them. We report results from the Giant Accreting Protoplanet Survey (GAPlanetS), which collected H α differential imagery of 14 transitional disk host stars with the Magellan Adaptive Optics System. To address the twin challenges of morphological complexity and point-spread function instability, GAPlanetS required novel approaches for frame selection and optimization of the Karhounen–Loéve Image Processing algorithm pyKLIP . We detect one new candidate, CS Cha “c,” at a separation of 68 mas and a modest Δmag of 2.3. We recover the HD 142527 B and HD 100453 B accreting stellar companions in several epochs, and the protoplanet PDS 70 c in 2017 imagery, extending its astrometric record by nine months. Though we cannot rule out scattered light structure, we also recover LkCa 15 “b,” at H α ; its presence inside the disk cavity, absence in Continuum imagery, and consistency with a forward-modeled point source suggest that it remains a viable protoplanet candidate. Through targeted optimization, we tentatively recover PDS 70 c at two additional epochs and PDS 70 b in one epoch. Despite numerous previously reported companion candidates around GAplanetS targets, we recover no additional point sources. Our moderate H α contrasts do not preclude most protoplanets, and we report limiting H α contrasts at unrecovered candidate locations. We find an overall detection rate of ∼36 − 22 + 26 % , considerably higher than most direct imaging surveys, speaking to both GAPlanetS’s highly targeted nature and the promise of H α differential imaging for protoplanet identification. 
    more » « less
    Free, publicly-accessible full text available May 5, 2024
  5. ABSTRACT

    We report the confirmation of HIP 67506 C, a new stellar companion to HIP 67506 A. We previously reported a candidate signal at 2λ/D (240 mas) in L′ in MagAO/Clio imaging using the binary differential imaging technique. Several additional indirect signals showed that the candidate signal merited follow-up: significant astrometric acceleration in Gaia DR3, Hipparcos–Gaia proper motion anomaly, and overluminosity compared to single main-sequence stars. We confirmed the companion, HIP 67506 C, at 0.1 arcsec with MagAO-X in 2022 April. We characterized HIP 67506 C MagAO-X photometry and astrometry, and estimated spectral-type K7-M2; we also re-evaluated HIP 67506 A in light of the close companion. Additionally, we show that a previously identified 9 arcsec companion, HIP 67506 B, is a much further distant unassociated background star. We also discuss the utility of indirect signposts in identifying small inner working angle candidate companions.

     
    more » « less
  6. ABSTRACT

    Improving direct detection capability close to the star through improved star subtraction and post-processing techniques is vital for discovering new low-mass companions and characterizing known ones at longer wavelengths. We present results of 17 binary star systems observed with the Magellan adaptive optics system (MagAO) and the Clio infrared camera on the Magellan Clay Telescope using binary differential imaging (BDI). BDI is an application of reference differential imaging (RDI) and angular differential imaging (ADI) applied to wide binary star systems (2 arcsec <Δρ < 10 arcsec) within the isoplanatic patch in the infrared. Each star serves as the point spread function (PSF) reference for the other, and we performed PSF estimation and subtraction using principal component analysis. We report contrast and mass limits for the 35 stars in our initial survey using BDI with MagAO/Clio in L′ and 3.95 µm bands. Our achieved contrasts varied between systems, and spanned a range of contrasts from 3.0 to 7.5 magnitudes and a range of separations from 0.2 to 2 arcsec. Stars in our survey span a range of masses, and our achieved contrasts correspond to late-type M-dwarf masses down to ∼10 MJup. We also report detection of a candidate companion signal at 0.2 arcsec (18 au) around HIP 67506 A (SpT G5V, mass ∼1.2 M⊙), which we estimate to be $\sim 60-90 \, \rm{M_{Jup}}$. We found that the effectiveness of BDI is highest for approximately equal brightness binaries in high-Strehl conditions.

     
    more » « less
  7. Abstract

    Companions embedded in the cavities of transitional circumstellar disks have been observed to exhibit excess luminosity at Hα, an indication that they are actively accreting. We report 5 yr (2013–2018) of monitoring of the position and Hαexcess luminosity of the embedded, accreting low-mass stellar companion HD 142527 B from the MagAO/VisAO instrument. We usepyklip, a Python implementation of the Karhunen–Loeve Image Processing algorithm, to detect the companion. Usingpyklipforward modeling, we constrain the relative astrometry to 1–2 mas precision and achieve sufficient photometric precision (±0.2 mag, 3% error) to detect changes in the Hαcontrast of the companion over time. In order to accurately determine the relative astrometry of the companion, we conduct an astrometric calibration of the MagAO/VisAO camera against 20 yr of Keck/NIRC2 images of the Trapezium cluster. We demonstrate agreement of our VisAO astrometry with other published positions for HD 142527 B, and useorbitize!to generate a posterior distribution of orbits fit to the relative astrometry of HD 142527 B. Our data suggest that the companion is close to periastron passage, on an orbit significantly misaligned with respect to both the wide circumbinary disk and the recently observed inner disk encircling HD 142527 A. We translate observed Hαcontrasts for HD 142527 B into mass accretion rate estimates on the order of 4–9 × 10−10Myr−1. Photometric variation in the Hαexcess of the companion suggests that the accretion rate onto the companion is variable. This work represents a significant step toward observing accretion-driven variability onto protoplanets, such as PDS 70 b&c.

     
    more » « less
  8. null (Ed.)
  9. Abstract

    We present follow-up photometry and spectroscopy of ZTF J0328−1219, strengthening its status as a white dwarf exhibiting transiting planetary debris. Using TESS and Zwicky Transient Facility photometry, along with follow-up high-speed photometry from various observatories, we find evidence for two significant periods of variability at 9.937 and 11.2 hr. We interpret these as most likely the orbital periods of different debris clumps. Changes in the detailed dip structures within the light curves are observed on nightly, weekly, and monthly timescales, reminiscent of the dynamic behavior observed in the first white dwarf discovered to harbor a disintegrating asteroid, WD 1145+017. We fit previously published spectroscopy along with broadband photometry to obtain new atmospheric parameters for the white dwarf, with M= 0.731 ± 0.023 M,Teff= 7630 ± 140 K, and [Ca/He] = − 9.55 ± 0.12. With new high-resolution spectroscopy, we detect prominent and narrow Na D absorption features likely of circumstellar origin, with velocities 21.4 ± 1.0 km s−1 blueshifted relative to atmospheric lines. We attribute the periodically modulated photometric signal to dusty effluents from small orbiting bodies such as asteroids or comets, but we are unable to identify the most likely material that is being sublimated, or otherwise ejected, as the environmental temperatures range from roughly 400 to 700 K.

     
    more » « less