skip to main content


Search for: All records

Creators/Authors contains: "Weinberger, Rainer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The physical origin of the seeds of supermassive black holes (SMBHs), with postulated initial masses ranging from ∼105 M⊙ to as low as ∼102 M⊙, is currently unknown. Most existing cosmological hydrodynamic simulations adopt very simple, ad hoc prescriptions for BH seeding and seed at unphysically high masses ∼105–106 M⊙. In this work, we introduce a novel sub-grid BH seeding model for cosmological simulations that is directly calibrated to high-resolution zoom simulations that explicitly resolve ∼103 M⊙ seeds forming within haloes with pristine, dense gas. We trace the BH growth along galaxy merger trees until their descendants reach masses of ∼104 or 105 M⊙. The results are used to build a new stochastic seeding model that directly seeds these descendants in lower resolution versions of our zoom region. Remarkably, we find that by seeding the descendants simply based on total galaxy mass, redshift and an environmental richness parameter, we can reproduce the results of the detailed gas-based seeding model. The baryonic properties of the host galaxies are well reproduced by the mass-based seeding criterion. The redshift-dependence of the mass-based criterion captures the combined influence of halo growth, dense gas formation, and metal enrichment on the formation of ∼103 M⊙ seeds. The environment-based seeding criterion seeds the descendants in rich environments with higher numbers of neighbouring galaxies. This accounts for the impact of unresolved merger dominated growth of BHs, which produces faster growth of descendants in richer environments with more extensive BH merger history. Our new seed model will be useful for representing a variety of low-mass seeding channels within next-generation larger volume uniform cosmological simulations.

     
    more » « less
  2. ABSTRACT

    We present the to-date largest parameter space exploration of binaries in circumbinary discs (CBDs), deriving orbital evolution prescriptions for eccentric, unequal mass binaries from our suite of hydrodynamic simulations. In all cases, binary eccentricities evolve towards steady state values that increase with mass ratio, and saturate at an equilibrium eccentricity eb,eq ∼ 0.5 in the large mass ratio regime, in line with resonant theory. For binaries accreting at their combined Eddington limit, a steady state eccentricity can be achieved within a few megayears. Once at their steady state eccentricities, binaries with qb ≳ 0.3 evolve towards coalescence, while lower mass ratio systems expand due to CBD torques. We discuss implications for population studies of massive black hole binaries, protostars in binary systems, and post-common envelope binaries observed by ground-based gravitational wave detectors.

     
    more » « less
  3. ABSTRACT

    We analyse the stellar abundances of massive galaxies (log M*/M⊙ > 10.5) at redshift, z = 2, in the IllustrisTNG simulation with the goal of guiding the interpretation of current and future observations, particularly from JWST. We find that the effective size, Re, of galaxies strongly affects the abundance measurements: both [Mg/H] and [Fe/H] are anticorrelated with Re, while the relative abundance [Mg/Fe] slightly increases with Re. The α enhancement as tracked by [Mg/Fe] traces the formation time-scale of a galaxy weakly, and mostly depends on Re. Aperture effects are important: measuring the stellar abundances within 1 kpc instead of within Re can make a large difference. These results are all due to a nearly universal, steeply declining stellar abundance profile that does not scale with galaxy size – Small galaxies appear metal-rich because their stars live in the inner part of the profile where abundances are high. The slope of this profile is mostly set by the gas-phase abundance profile and not substantially modified by stellar age gradients. The gas-phase abundance profile, in turn, is determined by the strong radial dependence of the gas fraction and star-formation efficiency. We develop a simple model to describe the chemical enrichment, in which each radial bin of a galaxy is treated as an independent closed-box system. This model reproduces the gas-phase abundance profile of simulated galaxies, but not the detailed distribution of their stellar abundances, for which gas and/or metal transport are likely needed.

     
    more » « less
  4. ABSTRACT Feedback driven by jets from active galactic nuclei is believed to be responsible for reducing cooling flows in cool-core galaxy clusters. We use simulations to model feedback from hydrodynamic jets in isolated haloes. While the jet propagation converges only after the diameter of the jet is well resolved, reliable predictions about the effects these jets have on the cooling time distribution function only require resolutions sufficient to keep the jet-inflated cavities stable. Comparing different model variations, as well as an independent jet model using a different hydrodynamics code, we show that the dominant uncertainties are the choices of jet properties within a given model. Independent of implementation, we find that light, thermal jets with low momentum flux tend to delay the onset of a cooling flow more efficiently on a 50 Myr time-scale than heavy, kinetic jets. The delay of the cooling flow originates from a displacement and boost in entropy of the central gas. If the jet kinetic luminosity depends on accretion rate, collimated, light, hydrodynamic jets are able to reduce cooling flows in haloes, without a need for jet precession or wide opening angles. Comparing the jet feedback with a ‘kinetic wind’ implementation shows that equal amounts of star formation rate reduction can be achieved by different interactions with the halo gas: the jet has a larger effect on the hot halo gas while leaving the denser, star-forming phase in place, while the wind acts more locally on the star-forming phase, which manifests itself in different time-variability properties. 
    more » « less
    Free, publicly-accessible full text available May 23, 2024
  5. ABSTRACT

    Arkenstone is a new model for multiphase, stellar feedback-driven galactic winds designed for inclusion in coarse resolution cosmological simulations. In this first paper of a series, we describe the features that allow Arkenstone to properly treat high specific energy wind components and demonstrate them using idealized non-cosmological simulations of a galaxy with a realistic circumgalactic medium (CGM), using the arepo code. Hot, fast gas phases with low mass loadings are predicted to dominate the energy content of multiphase outflows. In order to treat the huge dynamic range of spatial scales involved in cosmological galaxy formation at feasible computational expense, cosmological volume simulations typically employ a Lagrangian code or else use adaptive mesh refinement with a quasi-Lagrangian refinement strategy. However, it is difficult to inject a high specific energy wind in a Lagrangian scheme without incurring artificial burstiness. Additionally, the low densities inherent to this type of flow result in poor spatial resolution. Arkenstone addresses these issues with a novel scheme for coupling energy into the transition region between the interstellar medium (ISM) and the CGM, while also providing refinement at the base of the wind. Without our improvements, we show that poor spatial resolution near the sonic point of a hot, fast outflow leads to an underestimation of gas acceleration as the wind propagates. We explore the different mechanisms by which low and high specific energy winds can regulate the star formation rate of galaxies. In future work, we will demonstrate other aspects of the Arkenstone model.

     
    more » « less
  6. ABSTRACT

    We explore implications of a range of black hole (BH) seeding prescriptions on the formation of the brightest $z$ ≳ 6 quasars in cosmological hydrodynamic simulations. The underlying galaxy formation model is the same as in the IllustrisTNG simulations. Using constrained initial conditions, we study the growth of BHs in rare overdense regions (forming $\gtrsim 10^{12}\, {\rm M}_{\odot }\,h^{-1}$ haloes by $z$ = 7) using a  (9 Mpc h−1)3 simulated volume. BH growth is maximal within haloes that are compact and have a low tidal field. For these haloes, we consider an array of gas-based seeding prescriptions wherein $M_{\mathrm{seed}}=10^4\!-\!10^6\, {\rm M}_{\odot }\,h^{-1}$ seeds are inserted in haloes above critical thresholds for halo mass and dense, metal-poor gas mass (defined as $\tilde{M}_{\mathrm{h}}$ and $\tilde{M}_{\mathrm{sf,mp}}$, respectively, in units of Mseed). We find that a seed model with $\tilde{M}_{\mathrm{sf,mp}}=5$ and $\tilde{M}_{\mathrm{h}}=3000$ successfully produces a $z$ ∼ 6 quasar with $\sim 10^9\, {\rm M}_{\odot }$ mass and ∼1047 erg s−1 luminosity. BH mergers play a crucial role at $z$ ≳ 9, causing an early boost in BH mass at a time when accretion-driven BH growth is negligible. With more stringent seeding conditions (e.g. $\tilde{M}_{\mathrm{sf,mp}}=1000$), the relative paucity of BH seeds results in a much lower merger rate. In this case, $z$ ≳ 6 quasars can only be formed if we enhance the maximum allowed BH accretion rates (by factors ≳10) compared to the accretion model used in IllustrisTNG. This can be achieved either by allowing for super-Eddington accretion, or by reducing the radiative efficiency. Our results demonstrate that progenitors of $z$ ∼ 6 quasars have distinct BH merger histories for different seeding models, which will be distinguishable with Laser Interferometer Space Antenna observations.

     
    more » « less
  7. ABSTRACT

    We study gas inflows on to supermassive black holes using hydrodynamics simulations of isolated galaxies and idealized galaxy mergers with an explicit, multiphase interstellar medium (ISM). Our simulations use the recently developed ISM and stellar evolution model called Stars and MUltiphase Gas in GaLaxiEs (SMUGGLE). We implement a novel super-Lagrangian refinement scheme that increases the gas mass resolution in the immediate neighbourhood of the black holes (BHs) to accurately resolve gas accretion. We do not include black hole feedback in our simulations. We find that the complex and turbulent nature of the SMUGGLE ISM leads to highly variable BH accretion. BH growth in SMUGGLE converges at gas mass resolutions ≲3 × 103 M⊙. We show that the low resolution simulations combined with the super-Lagrangian refinement scheme are able to produce central gas dynamics and BH accretion rates very similar to that of the uniform high resolution simulations. We further explore BH fueling by simulating galaxy mergers. The interaction between the galaxies causes an inflow of gas towards the galactic centres and results in elevated and bursty star formation. The peak gas densities near the BHs increase by orders of magnitude resulting in enhanced accretion. Our results support the idea that galaxy mergers can trigger AGN activity, although the instantaneous accretion rate depends strongly on the local ISM. We also show that the level of merger-induced enhancement of BH fueling predicted by the SMUGGLE model is much smaller compared to the predictions by simulations using an effective equation of state model of the ISM.

     
    more » « less
  8. ABSTRACT

    We present a post-processing catalogue of globular clusters (GCs) for the 39 most massive groups and clusters in the TNG50 simulation of the IlllustrisTNG project (virial masses $M_{200} =[5\times 10^{12} \rm {\!-\!} 2 \times 10^{14}$] M⊙). We tag GC particles to all galaxies with stellar mass M* ≥ 5 × 106 M⊙, and we calibrate their masses to reproduce the observed power-law relation between GC mass and halo mass for galaxies with M200 ≥ 1011 M⊙ (corresponding to M* ∼ 109 M⊙). Here, we explore whether an extrapolation of this MGC–M200 relation to lower mass dwarfs is consistent with current observations. We find a good agreement between our predicted number and specific frequency of GCs in dwarfs with $\rm {\it M}_*=[5 \times 10^6 \rm {\!-\!} 10^9]$ M⊙ and observations. Moreover, we predict a steep decline in the GC occupation fraction for dwarfs with M* < 109 M⊙ that agrees well with current observational constraints. This declining occupation fraction is due to a combination of tidal stripping in all dwarfs plus a stochastic sampling of the GC mass function for dwarfs with M* < 107.5 M⊙. Our simulations also reproduce available constraints on the abundance of intracluster GCs in Virgo and Centaurus A. These successes provide support to the hypothesis that the MGC–M200 relation holds, albeit with more scatter, all the way down to the regime of classical dwarf spheroidals in these environments. Our GC catalogues are publicly available as part of the IllustrisTNG data release.

     
    more » « less
  9. Abstract Several lines of evidence suggest that the Milky Way underwent a major merger at z ∼ 2 with the Gaia-Sausage-Enceladus (GSE) galaxy. Here we use H3 Survey data to argue that GSE entered the Galaxy on a retrograde orbit based on a population of highly retrograde stars with chemistry similar to the largely radial GSE debris. We present the first tailored N -body simulations of the merger. From a grid of ≈500 simulations we find that a GSE with M ⋆ = 5 × 10 8 M ⊙ , M DM = 2 × 10 11 M ⊙ best matches the H3 data. This simulation shows that the retrograde stars are stripped from GSE’s outer disk early in the merger. Despite being selected purely on angular momenta and radial distributions, this simulation reproduces and explains the following phenomena: (i) the triaxial shape of the inner halo, whose major axis is at ≈35° to the plane and connects GSE’s apocenters; (ii) the Hercules-Aquila Cloud and the Virgo Overdensity, which arise due to apocenter pileup; and (iii) the 2 Gyr lag between the quenching of GSE and the truncation of the age distribution of the in situ halo, which tracks the lag between the first and final GSE pericenters. We make the following predictions: (i) the inner halo has a “double-break” density profile with breaks at both ≈15–18 kpc and 30 kpc, coincident with the GSE apocenters; and (ii) the outer halo has retrograde streams awaiting discovery at >30 kpc that contain ≈10% of GSE’s stars. The retrograde (radial) GSE debris originates from its outer (inner) disk—exploiting this trend, we reconstruct the stellar metallicity gradient of GSE (−0.04 ± 0.01 dex r 50 − 1 ). These simulations imply that GSE delivered ≈20% of the Milky Way’s present-day dark matter and ≈50% of its stellar halo. 
    more » « less
  10. ABSTRACT

    Direct collapse black holes (BHs) are promising candidates for producing massive z ≳ 6 quasars, but their formation requires fine-tuned conditions. In this work, we use cosmological zoom simulations to study systematically the impact of requiring: (1) low gas angular momentum (spin), and (2) a minimum incident Lyman–Werner (LW) flux in order to form BH seeds. We probe the formation of seeds (with initial masses of $M_{\rm seed} \sim 10^4\!-\!10^6\, \mathrm{M}_{\odot }\, h^{-1})$ in haloes with a total mass >3000 × Mseed and a dense, metal-poor gas mass >5 × Mseed. Within this framework, we find that the seed-forming haloes have a prior history of star formation and metal enrichment, but they also contain pockets of dense, metal-poor gas. When seeding is further restricted to haloes with low gas spins, the number of seeds formed is suppressed by factors of ∼6 compared to the baseline model, regardless of the seed mass. Seed formation is much more strongly impacted if the dense, metal-poor gas is required to have a critical LW flux (Jcrit). Even for Jcrit values as low as 50J21, no $8\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$ seeds are formed. While lower mass ($1.25\times 10^{4},1\times 10^{5}~\mathrm{M}_{\odot }\, h^{-1}$) seeds do form, they are strongly suppressed (by factors of ∼10–100) compared to the baseline model at gas mass resolutions of $\sim 10^4~\mathrm{M}_{\odot }\, h^{-1}$ (with even stronger suppression at higher resolutions). As a result, BH merger rates are also similarly suppressed. Since early BH growth is dominated by mergers in our models, none of the seeds are able to grow to the supermassive regime ($\gtrsim 10^6~\mathrm{M}_{\odot }\, h^{-1}$) by z = 7. Our results hint that producing the bulk of the z ≳ 6 supermassive BH population may require alternate seeding scenarios that do not depend on the LW flux, early BH growth dominated by rapid or super-Eddington accretion, or a combination of these possibilities.

     
    more » « less