skip to main content


Search for: All records

Creators/Authors contains: "Weld, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantum transport can distinguish between dynamical phases of matter. For instance, ballistic propagation characterizes the absence of disorder, whereas in many-body localized phases, particles do not propagate for exponentially long times. Additional possibilities include states of matter exhibiting anomalous transport in which particles propagate with a non-trivial exponent. Here we report the experimental observation of anomalous transport across a broad range of the phase diagram of a kicked quasicrystal. The Hamiltonian of our system has been predicted to exhibit a rich phase diagram, including not only fully localized and fully delocalized phases but also an extended region comprising a nested pattern of localized, delocalized and multifractal states, which gives rise to anomalous transport. Our cold-atom realization is enabled by new Floquet engineering techniques, which expand the accessible phase diagram by five orders of magnitude. Mapping transport properties throughout the phase diagram, we observe disorder-driven re-entrant delocalization and sub-ballistic transport, and we present a theoretical explanation of these phenomena based on eigenstate multifractality.

     
    more » « less
  2. Abstract

    Modern quantum technologies rely crucially on techniques to mitigate quantum decoherence; these techniques can be either passive, achieved for example via materials engineering, or active, typically achieved via pulsed monochromatic driving fields applied to the qubit. Using a solid-state defect spin coupled to a microwave-driven spin bath, we experimentally demonstrate a decoherence mitigation method based on spectral engineering of the environmental noise with a polychromatic drive waveform, and show that it outperforms monochromatic techniques. Results are in agreement with quantitative modeling, and open the path to active decoherence protection using custom-designed waveforms applied to the environment rather than the qubit.

     
    more » « less
  3. Abstract Exponential decay laws describe systems ranging from unstable nuclei to fluorescent molecules, in which the probability of jumping to a lower-energy state in any given time interval is static and history-independent. These decays, involving only a metastable state and fluctuations of the quantum vacuum, are the most fundamental nonequilibrium process and provide a microscopic model for the origins of irreversibility. Despite the fact that the apparently universal exponential decay law has been precisely tested in a variety of physical systems, it is a surprising truth that quantum mechanics requires that spontaneous decay processes have nonexponential time dependence at both very short and very long times. Cold-atom experiments have proven to be powerful probes of fundamental decay processes; in this article, we propose the use of Bose condensates in Floquet–Bloch bands as a probe of long-time nonexponential decay in single isolated emitters. We identify a range of parameters that should enable observation of long-time deviations and experimentally demonstrate a key element of the scheme: tunable decay between quasi-energy bands in a driven optical lattice. 
    more » « less