skip to main content


Search for: All records

Creators/Authors contains: "Wells, Konstans"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Emerging infectious diseases increasingly threaten wildlife populations. Most studies focus on managing short‐term epidemic properties, such as controlling early outbreaks. Predicting long‐term endemic characteristics with limited retrospective data is more challenging. We used individual‐based modeling informed by individual variation in pathogen load and transmissibility to predict long‐term impacts of a lethal, transmissible cancer on Tasmanian devil (Sarcophilus harrisii) populations. For this, we employed approximate Bayesian computation to identify model scenarios that best matched known epidemiological and demographic system properties derived from 10 yr of data after disease emergence, enabling us to forecast future system dynamics. We show that the dramatic devil population declines observed thus far are likely attributable to transient dynamics (initial dynamics after disease emergence). Only 21% of matching scenarios led to devil extinction within 100 yr following devil facial tumor disease (DFTD) introduction, whereasDFTDfaded out in 57% of simulations. In the remaining 22% of simulations, disease and host coexisted for at least 100 yr, usually with long‐period oscillations. Our findings show that pathogen extirpation or host–pathogen coexistence are much more likely than theDFTD‐induced devil extinction, with crucial management ramifications. Accounting for individual‐level disease progression and the long‐term outcome of devil–DFTDinteractions at the population‐level, our findings suggest that immediate management interventions are unlikely to be necessary to ensure the persistence of Tasmanian devil populations. This is because strong population declines of devils after disease emergence do not necessarily translate into long‐term population declines at equilibria. Our modeling approach is widely applicable to other host–pathogen systems to predict disease impact beyond transient dynamics.

     
    more » « less
  3. Habitat loss is the primary driver of biodiversity decline worldwide, but the effects of fragmentation (the spatial arrangement of remaining habitat) are debated. We tested the hypothesis that forest fragmentation sensitivity—affected by avoidance of habitat edges—should be driven by historical exposure to, and therefore species’ evolutionary responses to disturbance. Using a database containing 73 datasets collected worldwide (encompassing 4489 animal species), we found that the proportion of fragmentation-sensitive species was nearly three times as high in regions with low rates of historical disturbance compared with regions with high rates of disturbance (i.e., fires, glaciation, hurricanes, and deforestation). These disturbances coincide with a latitudinal gradient in which sensitivity increases sixfold at low versus high latitudes. We conclude that conservation efforts to limit edges created by fragmentation will be most important in the world’s tropical forests.

     
    more » « less
  4. Abstract Aim

    Macroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers.

    Location

    Global.

    Time period

    1994–2019.

    Major taxa studied

    Avian haemosporidian parasites (generaPlasmodium,Haemoproteus,LeucocytozoonandParahaemoproteus).

    Methods

    We amalgamated infection data from 53,669 individual birds representing 2,445 species world‐wide. Spatio‐phylogenetic hierarchical Bayesian models were built to disentangle potential landscape, climatic and biotic drivers of infection probability while accounting for spatial context and avian host phylogenetic relationships.

    Results

    Idiosyncratic responses of the three most common haemosporidian genera to climate, habitat, host relatedness and host ecological traits indicated marked variation in host infection rates from local to global scales. Notably, host ecological drivers, such as migration distance forPlasmodiumandParahaemoproteus, exhibited predominantly varying or even opposite effects on infection rates across regions, whereas climatic effects on infection rates were more consistent across realms. Moreover, infections in some low‐prevalence realms were disproportionately concentrated in a few local hotspots, suggesting that regional‐scale variation in habitat and microclimate might influence transmission, in addition to global drivers.

    Main conclusions

    Our hierarchical global analysis supports regional‐scale findings showing the synergistic effects of landscape, climate and host ecological traits on parasite transmission for a cosmopolitan and diverse group of avian parasites. Our results underscore the need to account for such interactions, in addition to possible variation in drivers across regions, to produce the robust inference required to predict changes in infection risk under future scenarios.

     
    more » « less