skip to main content


Search for: All records

Creators/Authors contains: "Wengrove, M. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rice, J. ; Liu, X. ; Sasanakul, I. ; McIlroy, M. ; Xiao, M. (Ed.)
    Coastal dunes often present the first line of defense for the built environment during extreme wave surge and storm events. In order to protect inland infrastructure, dunes must resist erosion in the face of these incidents. Microbial induced carbonate precipitation (MICP), or more commonly bio-cementation, can be used to increase the critical shear strength of sand and mitigate erosion. To evaluate the performance of bio-cemented dunes, prototypical dunes consisting of clean poorly graded sand collected from the Oregon coast were constructed within the Large Wave Flume at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. The bio-cementation treatment was sprayed onto the surface of the unsaturated dune. The level of cementation was monitored using shear wave velocity measurements throughout the duration of the treatments. The treated and control dunes were subjected to 19 trials of approximately 300 waves each, with each trial increasing in water depth, wave height, and wave period. The performance of the dune was evaluated using lidar scans between each wave trial. The results indicate that the surface spraying treatment technique produced consistent levels of bio-cementation throughout the treated length of the dune and demonstrated significant resistance to erosion from the wave trails. 
    more » « less
  2. Abstract

    Bedload transport is an important mechanism for sediment flux in the nearshore. Yet few studies examine the relationship between bedform evolution and net sediment transport. Our work contributes concurrent observations of bedform mobility and bedload transport in response to wave dominant, current dominant, and combined wave‐current flows in the nearshore. Bedload sediment flux from migrating bedforms during combined wave‐current conditions accounted for at least 20% more bedload transport when compared with wave dominant flows and at least 80% more than current‐dominant flows. Bedforms were observed to transport the most sediment during periods with strong currents, with high‐energy skewed waves, and while bedform orientation and transport direction were aligned. Regardless of flow type, bedform migration rates were directly proportional to the total kinetic energy contained in the flow field. Eleven bedload transport models formulated to be used in combined flows (both shear and energetics based) were compared with sediment flux estimated from measured bedform migration. An energetics based sediment transport model was most representative for our data.

     
    more » « less