skip to main content


Search for: All records

Creators/Authors contains: "West, Korbin H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 3, 2024
  2. null (Ed.)
  3. Abstract

    Staphylococcus aureusis a ubiquitous bacterium that has become a major threat to human health due to its extensive toxin production and tremendous capacity for antibiotic resistance (e. g., MRSA “superbug” infections). Amid a worsening antibiotic resistance crisis, new strategies to combat this deadly microbe that remove the selective pressure of traditional approaches are in high demand.S. aureusutilizes an accessory gene regulator (agr) quorum sensing network to monitor its local cellular population and trigger a devastating communal attack, like an invading horde, once a threshold cell density has been reached. The role of theagrsystem in a range of disease types is still being unraveled. Herein, we discuss the present‐day biochemical understanding ofagralong with unresolved details, describe its connection to the progression of infection, and review how chemical strategies have been implemented to study and intercept this signaling pathway. This research is illuminating the potential ofagras an anti‐virulence target inS. aureusand should inform the study of similar, yet less studied,agrsystems in related bacterial pathogens.

     
    more » « less
  4. Abstract

    There is significant interest in approaches to the treatment of bacterial infections that block virulence without creating selective pressures that lead to resistance. Here, we report the development of an “anti‐virulence” strategy that exploits the activity of potent synthetic inhibitors of quorum sensing (QS) inStaphylococcus aureus. We identify peptide‐based inhibitors of QS that are resistant to sequestration or degradation by components of murine tissue and demonstrate that encapsulation of a lead inhibitor in degradable polymer microparticles provides materials that substantially inhibit QSin vitro. Using a murine abscess model, we show that this inhibitor attenuates methicillin‐resistantS. aureus(MRSA) skin infectionsin vivo, and that sustained release of the inhibitor from microparticles significantly improved outcomes compared to mice that received a single‐dose bolus. Our results present an effective and modular approach to controlling bacterial virulencein vivoand could advance the development of new strategies for skin infection control.

     
    more » « less
  5. Abstract

    There is significant interest in approaches to the treatment of bacterial infections that block virulence without creating selective pressures that lead to resistance. Here, we report the development of an “anti‐virulence” strategy that exploits the activity of potent synthetic inhibitors of quorum sensing (QS) inStaphylococcus aureus. We identify peptide‐based inhibitors of QS that are resistant to sequestration or degradation by components of murine tissue and demonstrate that encapsulation of a lead inhibitor in degradable polymer microparticles provides materials that substantially inhibit QSin vitro. Using a murine abscess model, we show that this inhibitor attenuates methicillin‐resistantS. aureus(MRSA) skin infectionsin vivo, and that sustained release of the inhibitor from microparticles significantly improved outcomes compared to mice that received a single‐dose bolus. Our results present an effective and modular approach to controlling bacterial virulencein vivoand could advance the development of new strategies for skin infection control.

     
    more » « less