skip to main content


Search for: All records

Creators/Authors contains: "Wex, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    PSR J1757−1854 is one of the most relativistic double neutron star binary systems known in our Galaxy, with an orbital period of $P_\text{b}=4.4\, \text{h}$ and an orbital eccentricity of e = 0.61. As such, it has promised to be an outstanding laboratory for conducting tests of relativistic gravity. We present the results of a 6-yr campaign with the 100-m Green Bank and 64-m Parkes radio telescopes, designed to capitalize on this potential. We identify secular changes in the profile morphology and polarization of PSR J1757−1854, confirming the presence of geodetic precession and allowing the constraint of viewing geometry solutions consistent with General Relativity. We also update PSR J1757−1854’s timing, including new constraints of the pulsar’s proper motion, post-Keplerian parameters, and component masses. We conclude that the radiative test of gravity provided by PSR J1757−1854 is fundamentally limited to a precision of 0.3 per cent due to the pulsar’s unknown distance. A search for pulsations from the companion neutron star is also described, with negative results. We provide an updated evaluation of the system’s evolutionary history, finding strong support for a large kick velocity of $w\ge 280\, \rm{km\,s}^{-1}$ following the second progenitor supernova. Finally, we reassess PSR J1757−1854’s potential to provide new relativistic tests of gravity. We conclude that a 3-σ constraint of the change in the projected semimajor axis ($\dot{x}$) associated with Lense–Thirring precession is expected no earlier than 2031. Meanwhile, we anticipate a 3-σ measurement of the relativistic orbital deformation parameter δθ as soon as 2026.

     
    more » « less
  2. Context. The PSR J2222−0137 binary system has a set of features that make it a unique laboratory for tests of gravity theories. Aims. To fully exploit the system’s potential for these tests, we aim to improve the measurements of its physical parameters, spin and orbital orientation, and post-Keplerian parameters, which quantify the observed relativistic effects. Methods. We describe an improved analysis of archival very long baseline interferometry (VLBI) data, which uses a coordinate convention in full agreement with that used in timing. We have also obtained much improved polarimetry of the pulsar with the Five hundred meter Aperture Spherical Telescope (FAST). We provide an improved analysis of significantly extended timing datasets taken with the Effelsberg, Nançay, and Lovell radio telescopes; this also includes previous timing data from the Green Bank Telescope. Results. From the VLBI analysis, we have obtained a new estimate of the position angle of the ascending node, Ω = 189 −18 +19 deg (all uncertainties are 68% confidence limits), and a new reference position for the pulsar with an improved and more conservative uncertainty estimate. The FAST polarimetric results, and in particular the detection of an interpulse, yield much improved estimates for the spin geometry of the pulsar, in particular an inclination of the spin axis of the pulsar of ∼84 deg. From the timing, we obtain a new ∼1% test of general relativity (GR) from the agreement of the Shapiro delay parameters and the rate of advance of periastron. Assuming GR in a self-consistent analysis of all effects, we obtain much improved masses: 1.831(10)  M ⊙ for the pulsar and 1.319(4)  M ⊙ for the white dwarf companion; the total mass, 3.150(14)  M ⊙ , confirms this as the most massive double degenerate binary known in the Galaxy. This analysis also yields the orbital orientation; in particular, the orbital inclination is 85.27(4) deg – indicating a close alignment between the spin of the pulsar and the orbital angular momentum – and Ω = 187.7(5.7) deg, which matches our new VLBI estimate. Finally, the timing also yields a precise measurement of the variation in the orbital period, Ṗ b = 0.251(8) × 10 −12 ss −1 ; this is consistent with the expected variation in the Doppler factor plus the orbital decay caused by the emission of gravitational waves predicted by GR. This agreement introduces stringent constraints on the emission of dipolar gravitational waves. 
    more » « less
  3. Context. Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data corruption effects can be calibrated. These studies are the most important when proposing observations of new sources, in the characterization of the capabilities of new or upgraded instruments, and when verifying model-based theoretical predictions in a direct comparison with observational data. Aims. We present the SYnthetic Measurement creator for long Baseline Arrays ( SYMBA ), a novel synthetic data generation pipeline for Very Long Baseline Interferometry (VLBI) observations. SYMBA takes into account several realistic atmospheric, instrumental, and calibration effects. Methods. We used SYMBA to create synthetic observations for the Event Horizon Telescope (EHT), a millimetre VLBI array, which has recently captured the first image of a black hole shadow. After testing SYMBA with simple source and corruption models, we study the importance of including all corruption and calibration effects, compared to the addition of thermal noise only. Using synthetic data based on two example general relativistic magnetohydrodynamics (GRMHD) model images of M 87, we performed case studies to assess the image quality that can be obtained with the current and future EHT array for different weather conditions. Results. Our synthetic observations show that the effects of atmospheric and instrumental corruptions on the measured visibilities are significant. Despite these effects, we demonstrate how the overall structure of our GRMHD source models can be recovered robustly with the EHT2017 array after performing calibration steps, which include fringe fitting, a priori amplitude and network calibration, and self-calibration. With the planned addition of new stations to the EHT array in the coming years, images could be reconstructed with higher angular resolution and dynamic range. In our case study, these improvements allowed for a distinction between a thermal and a non-thermal GRMHD model based on salient features in reconstructed images. 
    more » « less