skip to main content


Search for: All records

Creators/Authors contains: "Whitney, Kenneth D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    While polyploids are common in nature, existing models suggest that polyploid establishment should be difficult and rare. We explore this apparent paradox by focussing on the role of unreduced gametes, as their union is the main route for the formation of neopolyploids. Production of such gametes is affected by genetic and environmental factors, resulting in variation in the formation rate of unreduced gametes (u). Once formed, neopolyploids face minority cytotype exclusion (MCE) due to a lack of viable mating opportunities. More than a dozen theoretical models have explored factors that could permit neopolyploids to overcome MCE and become established. Until now, however, none have explored variability in u and its consequences for the rate of polyploid establishment. Here, we determine the distribution that best fits the available empirical data on u. We perform a global sensitivity analysis exploring the consequences of using empirical distributions of u to investigate effects on polyploid establishment. We determined that in many cases, u is best fit by a log-normal distribution. We found environmental stochasticity in u dramatically impacts model predictions when compared to a static u. Our results help reconcile previous modelling results suggesting high barriers to the polyploid establishment with the observation that polyploids are common in nature.

     
    more » « less
  2. This study was designed to examine community- or population-level fluctuations in bee species at the Sevilleta National Wildlife Refuge, both intra- and inter-annually. From 2002 to 2019, passive funnel traps were used to collect bees at three sites, each representing a different ecosystem type of the southwestern U.S. (Plains grassland, Chihuahuan Desert grassland, and Chihuahuan Desert shrubland). Bees were collected during each month from March through October, and were identified to species by taxonomic experts. 
    more » « less
  3. This dataset contains measurements of morphological (leaf, stem, root, and seed), nutrient, and isotopic traits for plant species growing in the Sevilleta National Wildlife Refuge. Approximately 104 species were sampled in or near four core sites of the SEV-LTER (core_blue, core_black, core_creosote, and core_PJ) plus the Sevilleta Field Station between 2017 and 2021. In addition, seed masses were measured from a 2016-era seed collection provided by Jenny Noble and added to the dataset; for these, site = NA. 
    more » « less
  4. Abstract

    Abiotic and biotic heterogeneity result in divergent patterns of natural selection in nature, with important consequences for fundamental evolutionary processes including local adaptation, speciation, and diversification. However, increasing amounts of the global terrestrial surface are homogenized by agriculture (which covers nearly 50% of terrestrial vegetated land surface) and other anthropogenic activities. Agricultural intensification leads to highly simplified biotic communities for many taxa, which may alter natural selection through biotic selective agents. In particular, the presence of crops may alter selection on traits of closely related wild relatives via shared mutualists and antagonists such as pollinators and herbivores. We asked how the presence of crop sunflowers (Helianthus annuus) alters natural selection on reproductive traits of wild sunflowers (Helianthus annuus texanus). Across two years and multiple sites, we planted replicated paired populations of wildH. a. texanusbordering sunflower crop fields versus approximately 2.5 km away. We measured fitness, floral traits, and interactions of the plants with insect pollinators and seed predators. We found limited evidence that proximity to crop sunflowers altered selection on individual traits, as total or direct selection differed by proximity for only three of eleven traits: ray length (a marginally significant effect),Isophrictis(Gelechiidae, moth) attack, andNeolasioptera(Cecidomyiidae, midge) attack. Direct (but not total) selection was significantly more heterogenous far from crop sunflowers relative to near crop sunflowers. Both mutualist pollinators and antagonist seed predators mediated differences in selection in some population‐pairs near versus far from crop sunflowers. Here, we demonstrate that agriculture can influence the evolution of wild species via altered selection arising from shared biotic interactions, complementing previously demonstrated evolutionary effects via hybridization.

     
    more » « less
  5. Abstract

    Hybridization is a biological phenomenon increasingly recognized as an important evolutionary process in both plants and animals, as it is linked to speciation, radiation, extinction, range expansion and invasion, and allows for increased trait diversity in agricultural and horticultural systems. Estimates of hybridization frequency vary across taxonomic groups, but causes of this variation are unknown. Here, we ask on a global scale whether hybridization is linked to any of 11 traits related to plant life history, reproduction, genetic predisposition, and environment or opportunity. Given that hybridization is not evenly distributed across the plant tree of life, we use phylogenetic generalized least squares regression models and phylogenetic path analysis to detect statistical associations between hybridization and plant traits at both the family and genus levels. We find that perenniality and woodiness are each weakly associated with an increased frequency of hybridization in univariate analyses, but path analysis suggests that the direct linkage is between perenniality and increased hybridization (with woodiness having only an indirect relationship with hybridization via perenniality). Weak associations between higher rates of hybridization and higher outcrossing rates, abiotic pollination syndromes, vegetative reproductive modes, larger genomes, and less variable genome sizes are detectable in some cases but not others. We argue that correlational evidence at the global scale, such as that presented here, provides a robust framework for forming hypotheses to examine and test drivers of hybridization at a more mechanistic level.

     
    more » « less
  6. Abstract

    Hybridization is a common phenomenon, yet its evolutionary outcomes remain debated. Here, we ask whether hybridization can speed adaptive evolution using resynthesized hybrids between two species of Texas sunflowers (Helianthus annuusandH. debilis) that form a natural hybrid in the wild (H. annuusssp.texanus). We established separate control and hybrid populations and allowed them to evolve naturally in a field evolutionary experiment. In a final common-garden, we measured fitness and a suite of key traits for these lineages. We show that hybrid fitness evolved in just seven generations, with fitness of the hybrid lines exceeding that of the controls by 14% and 51% by the end of the experiment, though only the latter represents a significant increase. More traits evolved significantly in hybrids relative to controls, and hybrid evolution was faster for most traits. Some traits in both hybrid and control lineages evolved in an adaptive manner consistent with the direction of phenotypic selection. These findings show a causal pathway from hybridization to rapid adaptation and suggest an explanation for the frequently noted association between hybridization and adaptive radiation, range expansion, and invasion.

     
    more » « less