skip to main content


Search for: All records

Creators/Authors contains: "Wilf, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Agathis (Araucariaceae) is a genus of broadleaved conifers that today inhabits lowland to upper montane rainforests of Australasia and Southeast Asia. A previous report showed that the earliest known fossils of the genus, from the early Paleogene and possibly latest Cretaceous of Patagonian Argentina, host diverse assemblages of insect and fungal associations, including distinctive leaf mines. Here, we provide complete documentation of the fossilized Agathis herbivore communities from Cretaceous to Recent, describing and comparing insect and fungal damage on Agathis across four latest Cretaceous to early Paleogene time slices in Patagonia with that on 15 extant species. Notable fossil associations include various types of external foliage feeding, leaf mines, galls, and a rust fungus. In addition, enigmatic structures, possibly armored scale insect (Diaspididae) covers or galls, occur on Agathis over a 16-million-year period in the early Paleogene. The extant Agathis species, throughout the range of the genus, are associated with a diverse array of mostly undescribed damage similar to the fossils, demonstrating the importance of Agathis as a host of diverse insect herbivores and pathogens and their little-known evolutionary history. 
    more » « less
    Free, publicly-accessible full text available May 26, 2024
  2. Abstract Premise The spurge family Euphorbiaceae is prominent in tropical rainforests worldwide, particularly in Asia. There is little consensus on the biogeographic origins of the family or its principal lineages. No confirmed spurge macrofossils have come from Gondwana. Methods We describe the first Gondwanan macrofossils of Euphorbiaceae, represented by two infructescences and associated peltate leaves from the early Eocene (52 Myr ago [Ma]) Laguna del Hunco site in Chubut, Argentina. Results The infructescences are panicles bearing tiny, pedicellate, spineless capsular fruits with two locules, two axile lenticular seeds, and two unbranched, plumose stigmas. The fossils' character combination only occurs today in some species of the Macaranga-Mallotus clade (MMC; Euphorbiaceae), a widespread Old-World understory group often thought to have tropical Asian origins. The associated leaves are consistent with extant Macaranga. Conclusions The new fossils are the oldest known for the MMC, demonstrating its Gondwanan history and marking its divergence by at least 52 Ma. This discovery makes an Asian origin of the MMC unlikely because immense oceanic distances separated Asia and South America 52 Ma. The only other MMC reproductive fossils so far known are also from the southern hemisphere (early Miocene, southern New Zealand), far from the Asian tropics. The MMC, along with many other Gondwanan survivors, most likely entered Asia during the Neogene Sahul-Sunda collision. Our discovery adds to a substantial series of well-dated, well-preserved fossils from one undersampled region, Patagonia, that have changed our understanding of plant biogeographic history. 
    more » « less
  3. Summary

    Many tree genera in the Malesian uplands have Southern Hemisphere origins, often supported by austral fossil records. Weathering the vast bedrock exposures in the everwet Malesian tropics may have consumed sufficient atmospheric CO2to contribute significantly to global cooling over the past 15 Myr. However, there has been no discussion of how the distinctive regional tree assemblages may have enhanced weathering and contributed to this process. We postulate that Gondwanan‐sourced tree lineages that can dominate higher‐elevation forests played an overlooked role in the Neogene CO2drawdown that led to the Ice Ages and the current, now‐precarious climate state. Moreover, several historically abundant conifers in Araucariaceae and Podocarpaceae are likely to have made an outsized contribution through soil acidification that increases weathering. If the widespread destruction of Malesian lowland forests continues to spread into the uplands, the losses will threaten unique austral plant assemblages and, if our hypothesis is correct, a carbon sequestration engine that could contribute to cooler planetary conditions far into the future. Immediate effects include the spread of heat islands, significant losses of biomass carbon and forest‐dependent biodiversity, erosion of watershed values, and the destruction of tens of millions of years of evolutionary history.

     
    more » « less
  4. null (Ed.)
    Abstract Here we present the first record of a stem-Coracii outside the Holarctic region, found in the early Eocene of Patagonia at the Laguna del Hunco locality. Ueekenkcoracias tambussiae gen. et sp. nov. consists of an incomplete right hind limb that presents the following combination of characters, characteristic of Coracii: relatively short and stout tibiotarsus, poorly developed crista cnemialis cranialis, short and wide tarsometatarsus, with the tuberositas m. tibialis cranialis located medially on the shaft, and curved and stout ungual phalanges. Although the presence of a rounded and conspicuous foramen vasculare distale and the trochlea metatarsi II strongly deflected medially resemble Primobucconidae, a fossil group only found in the Eocene of Europe and North America, our phylogenetic analysis indicates the new taxon is the basalmost known Coracii. The unexpected presence of a stem-Coracii in the Eocene of South America indicates that this clade had a more widespread distribution than previously hypothesized, already extending into the Southern Hemisphere by the early Eocene. Ueekenkcoracias tambussiae represents new evidence of the increasing diversity of stem lineages of birds in the Eocene. The new material provides novel morphological data for understanding the evolutionary origin and radiation of rollers and important data for estimates of the divergence time of the group. 
    more » « less
  5. Abstract We discuss a recent assessment by Dörken et al. (2021) regarding the affinities of the Eocene fossil species Huncocladus laubenfelsii from Laguna del Hunco (Patagonia, Argentina). We originally (Andruchow-Colombo et al., 2019) assigned this species to the conifer family Podocarpaceae as the first certain South American macrofossil record of the phyllocladoid lineage (Huncocladus+Phyllocladus), based on a combination of numerous macro- and micromorphological vegetative characters. However, Dörken et al. (2021) rejected the podocarpaceous affinity of H. laubenfelsii and considered it to be more closely related to the cycad genera Bowenia or Eobowenia. Their assessment was based almost entirely on two cuticular characters, with only superficial consideration of the abundant additional evidence available that included several diagnostic macromorphological features. We review the two characters mentioned by these authors, and other features, and find that their suggestion is contradicted by the available evidence, maintaining our original assignment. Critical characters include presence/absence of a midvein, secondary venation pattern, arrangement and general morphology of the photosynthetic structures, and morphology and disposition of epidermal cells. 
    more » « less
  6. The Malay Archipelago is one of the most biodiverse regions on Earth, but it suffers high extinction risks due to severe anthropogenic pressures. Paleobotanical knowledge provides baselines for the conservation of living analogs and improved understanding of vegetation, biogeography, and paleoenvironments through time. The Malesian bioregion is well studied palynologically, but there have been very few investigations of Cenozoic paleobotany (plant macrofossils) in a century or more. We report the first paleobotanical survey of Brunei Darussalam, a sultanate on the north coast of Borneo that still preserves the majority of its extraordinarily diverse, old-growth tropical rainforests. We discovered abundant compression floras dominated by angiosperm leaves at two sites of probable Pliocene age: Berakas Beach, in the Liang Formation, and Kampong Lugu, in an undescribed stratigraphic unit. Both sites also yielded rich palynofloral assemblages from the macrofossil-bearing beds, indicating lowland fern-dominated swamp (Berakas Beach) and mangrove swamp (Kampong Lugu) depositional environments. Fern spores from at least nine families dominate both palynological assemblages, along with abundant fungal and freshwater algal remains, rare marine microplankton, at least four mangrove genera, and a diverse rainforest tree and liana contribution (at least 19 families) with scarce pollen of Dipterocarpaceae, today’s dominant regional life form. Compressed leaves and rare reproductive material represent influx to the depocenters from the adjacent coastal rainforests. Although only about 40% of specimens preserve informative details, we can distinguish 23 leaf and two reproductive morphotypes among the two sites. Dipterocarps are by far the most abundant group in both compression assemblages, providing rare, localized evidence for dipterocarp-dominated lowland rainforests in the Malay Archipelago before the Pleistocene. The dipterocarp fossils include winged Shorea fruits, at least two species of plicate Dipterocarpus leaves, and very common Dryobalanops leaves. We attribute additional leaf taxa to Rhamnaceae ( Ziziphus ), Melastomataceae, and Araceae ( Rhaphidophora ), all rare or new fossil records for the region. The dipterocarp leaf dominance contrasts sharply with the family’s <1% representation in the palynofloras from the same strata. This result directly demonstrates that dipterocarp pollen is prone to strong taphonomic filtering and underscores the importance of macrofossils for quantifying the timing of the dipterocarps’ rise to dominance in the region. Our work shows that complex coastal rainforests dominated by dipterocarps, adjacent to swamps and mangroves and otherwise similar to modern ecosystems, have existed in Borneo for at least 4–5 million years. Our findings add historical impetus for the conservation of these gravely imperiled and extremely biodiverse ecosystems. 
    more » « less