skip to main content


Search for: All records

Creators/Authors contains: "Williams, Q."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The crystal structure and bonding environment of K2Ca(CO3)2bütschliite were probed under isothermal compression via Raman spectroscopy to 95 GPa and single crystal and powder X-ray diffraction to 12 and 68 GPa, respectively. A second order Birch-Murnaghan equation of state fit to the X-ray data yields a bulk modulus,$${K}_{0}=46.9$$K0=46.9GPa with an imposed value of$${K}_{0}^{\prime}= 4$$K0=4for the ambient pressure phase. Compression of bütschliite is highly anisotropic, with contraction along thec-axis accounting for most of the volume change. Bütschliite undergoes a phase transition to a monoclinicC2/mstructure at around 6 GPa, mirroring polymorphism within isostructural borates. A fit to the compression data of the monoclinic phase yields$${V}_{0}=322.2$$V0=322.2 Å3$$,$$,$${K}_{0}=24.8$$K0=24.8GPa and$${K}_{0}^{\prime}=4.0$$K0=4.0using a third order fit; the ability to access different compression mechanisms gives rise to a more compressible material than the low-pressure phase. In particular, compression of theC2/mphase involves interlayer displacement and twisting of the [CO3] units, and an increase in coordination number of the K+ion. Three more phase transitions, at ~ 28, 34, and 37 GPa occur based on the Raman spectra and powder diffraction data: these give rise to new [CO3] bonding environments within the structure.

     
    more » « less
  2. Abstract

    The infrared hydroxyl bands and first hydroxyl combination bands of glaucophane are characterized under pressure. In this weakly hydrogen-bonded mineral, the anharmonicity parameter, as determined from the difference between combinations and the fundamentals, is nearly constant with pressure to 15 GPa, indicating that the ambient pressure value of hydroxyl-bond anharmonicity closely reflects its value at high pressures. Given this near-constancy, the Grüneisen parameters of the hydroxyl stretching vibrations of a wide range of minerals, as derived from the pressure dependence of their O–H stretching frequencies, are correlated with the anharmonic parameter of each vibration, as determined from the ambient pressure offset of the summed frequencies of the fundamentaln = 0 to 1 transitions and the frequency of the hydroxyl combination or overtone band corresponding to then = 0 to 2 transition. This correlation is motivated by (1) the anharmonic origin of the Grüneisen parameter; and (2) the grossly similar form of the interatomic potential governing weak- and medium-strength hydrogen bonding in many minerals. This possible correlation provides a means through which the likely pressure-induced hydroxyl mode shifts of phases might be estimated from ambient pressure near-infrared measurements and emphasizes the importance of near-infrared combination/overtone band measurements. In this context, the combination/overtone bands of high-pressure hydrous phases are almost completely uncharacterized, and thus one probe of their anharmonicity has been neglected. Such information directly constrains the nature of hydrogen bonding in these phases, and hence provides possible insights into both their retention of hydrogen and its mobility. Deviations from the anharmonicity-Grüneisen parameter correlation, when observed (as may be the case in prehnite), could provide insights into anomalous effects on the hydroxyl potential well induced by bifurcated H-bonds, pressure-dependent Davydov splitting, or the influence of neighboring cations.

     
    more » « less
  3. null (Ed.)
    Garnet is an important mineral phase in the upper mantle as it is both a key component in bulk mantle rocks, and a primary phase at high-pressure within subducted basalt. Here, we focus on the strength of garnet and the texture that develops within garnet during accommodation of differential deformational strain. We use X-ray diffraction in a radial geometry to analyze texture development in situ in three garnet compositions under pressure at 300 K: a natural garnet (Prp60Alm37) to 30 GPa, and two synthetic majorite-bearing compositions (Prp59Maj41 and Prp42Maj58) to 44 GPa. All three garnets develop a modest (100) texture at elevated pressure under axial compression. Elasto-viscoplastic self-consistent (EVPSC) modeling suggests that two slip systems are active in the three garnet compositions at all pressures studied: {110}<1-21 11> and {001}<110>. We determine a flow strength of ~5 GPa at pressures between 10 to 15 GPa for all three garnets; these values are higher than previously measured yield strengths measured on natural and majoritic garnets. Strengths calculated using the experimental lattice strain differ from the strength generated from those calculated using EVPSC. Prp67Alm33, Prp59Maj41 and Prp42Maj58 are of comparable strength to each other at room temperature, which indicates that majorite substitution does not greatly affect the strength of garnets. Additionally, all three garnets are of similar strength as lower mantle phases such as bridgmanite and ferropericlase, suggesting that garnet may not be notably stronger than the surrounding lower mantle/deep upper mantle phases at the base of the upper mantle. 
    more » « less