skip to main content


Search for: All records

Creators/Authors contains: "Williamson, David P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Del Pia, Alberto ; Kaibel, Volker (Ed.)
    A long-standing conjecture for the traveling salesman problem (TSP) states that the integrality gap of the standard linear programming relaxation of the TSP (sometimes called the Subtour LP or the Held-Karp bound) is at most 4/3 for symmetric instances of the TSP obeying the triangle inequality. In this paper we consider the half-integral case, in which a feasible solution to the LP has solution values in {0,1/2,1} . Karlin, Klein, and Oveis Gharan [9], in a breakthrough result, were able to show that in the half-integral case, the integrality gap is at most 1.49993; Gupta et al. [6] showed a slight improvement of this result to 1.4983. Both of these papers consider a hierarchy of critical tight sets in the support graph of the LP solution, in which some of the sets correspond to cycle cuts and the others to degree cuts. Here we show that if all the sets in the hierarchy correspond to cycle cuts, then we can find a distribution of tours whose expected cost is at most 4/3 times the value of the half-integral LP solution; sampling from the distribution gives us a randomized 4/3-approximation algorithm. We note that known bad cases for the integrality gap have a gap of 4/3 and have a half-integral LP solution in which all the critical tight sets in the hierarchy are cycle cuts; thus our result is tight. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. Kavitha, Telikepalli ; Mehlhorn, Kurt (Ed.)
    This paper revisits the 2-approximation algorithm for k-MST presented by Garg [9] in light of a recent paper of Paul et al. [14]. In the k-MST problem, the goal is to return a tree spanning k vertices of minimum total edge cost. Paul et al. [14] extend Garg's primal-dual subroutine to improve the approximation ratios for the budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm and analysis to provide a cleaner version of Garg's result. Additionally, we introduce the novel concept of a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of the pruning phase. Other notable updates include presenting a linear programming formulation of the k-MST problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral sets, and providing an explicit potential function. 
    more » « less
  3. Tauman Kalai, Yael (Ed.)
    Over the last two decades, a significant line of work in theoretical algorithms has made progress in solving linear systems of the form 𝐋𝐱 = 𝐛, where 𝐋 is the Laplacian matrix of a weighted graph with weights w(i,j) > 0 on the edges. The solution 𝐱 of the linear system can be interpreted as the potentials of an electrical flow in which the resistance on edge (i,j) is 1/w(i,j). Kelner, Orrechia, Sidford, and Zhu [Kelner et al., 2013] give a combinatorial, near-linear time algorithm that maintains the Kirchoff Current Law, and gradually enforces the Kirchoff Potential Law by updating flows around cycles (cycle toggling). In this paper, we consider a dual version of the algorithm that maintains the Kirchoff Potential Law, and gradually enforces the Kirchoff Current Law by cut toggling: each iteration updates all potentials on one side of a fundamental cut of a spanning tree by the same amount. We prove that this dual algorithm also runs in a near-linear number of iterations. We show, however, that if we abstract cut toggling as a natural data structure problem, this problem can be reduced to the online vector-matrix-vector problem (OMv), which has been conjectured to be difficult for dynamic algorithms [Henzinger et al., 2015]. The conjecture implies that the data structure does not have an O(n^{1-ε}) time algorithm for any ε > 0, and thus a straightforward implementation of the cut-toggling algorithm requires essentially linear time per iteration. To circumvent the lower bound, we batch update steps, and perform them simultaneously instead of sequentially. An appropriate choice of batching leads to an Õ(m^{1.5}) time cut-toggling algorithm for solving Laplacian systems. Furthermore, we show that if we sparsify the graph and call our algorithm recursively on the Laplacian system implied by batching and sparsifying, we can reduce the running time to O(m^{1 + ε}) for any ε > 0. Thus, the dual cut-toggling algorithm can achieve (almost) the same running time as its primal cycle-toggling counterpart. 
    more » « less
  4. Schulz, Christian ; Ucar, Bora (Ed.)
    We experimentally evaluate the performance of several Max Cut approximation algorithms. In particular, we compare the results of the Goemans and Williamson algorithm using semidefinite programming with Trevisan’s algorithm using spectral partitioning. The former algorithm has a known .878 approximation guarantee whereas the latter has a .614 approximation guarantee. We investigate whether this gap in approximation guarantees is evident in practice or whether the spectral algorithm performs as well as the SDP. We also compare the performances to the standard greedy Max Cut algorithm which has a .5 approximation guarantee and two additional spectral algorithms. The algorithms are tested on Erdős-Renyi random graphs, complete graphs from TSPLIB, and real-world graphs from the Network Repository. We find, unsurprisingly, that the spectral algorithms provide a significant speed advantage over the SDP. In our experiments, the spectral algorithms return cuts with values which are competitive with those of the SDP. 
    more » « less
  5. Aardal, Karen ; Sanità, Laura (Ed.)
    This paper considers the interplay between semidefinite programming, matrix rank, and graph coloring. Karger, Motwani, and Sudan [10] give a vector program for which a coloring of the graph can be encoded as a semidefinite matrix of low rank. By complementary slackness conditions of semidefinite programming, if an optimal dual solution has sufficiently high rank, any optimal primal solution must have low rank. We attempt to characterize graphs for which we can show that the corresponding dual optimal solution must have sufficiently high rank. In the case of the original Karger, Motwani, and Sudan vector program, we show that any graph which is a k-tree has sufficiently high dual rank, and we can extract the coloring from the corresponding low-rank primal solution. We can also show that if the graph is not uniquely colorable, then no sufficiently high rank dual optimal solution can exist. This allows us to completely characterize the planar graphs for which dual optimal solutions have sufficiently high dual rank, since it is known that the uniquely colorable planar graphs are precisely the planar 3-trees. We then modify the semidefinite program to have an objective function with costs, and explore when we can create a cost function whose optimal dual solution has sufficiently high rank. We show that it is always possible to construct such a cost function given the graph coloring. The construction of the cost function gives rise to a heuristic for graph coloring which we show works well in the case of planar graphs; we enumerated all maximal planar graphs with a K4 of up to 14 vertices, and the heuristics successfully colored 99.75% of them. Our research was motivated by the Colin de Verdière graph invariant [5] (and a corresponding conjecture of Colin de Verdière), in which matrices that have some similarities to the dual feasible matrices must have high rank in the case that graphs are of a certain type; for instance, planar graphs have rank that would imply the 4-colorability of the primal solution. We explore the connection between the conjecture and the rank of the dual solutions. 
    more » « less
  6. null (Ed.)
    The traveling salesman problem (TSP) is a fundamental problem in combinatorial optimization. Several semidefinite programming relaxations have been proposed recently that exploit a variety of mathematical structures including, for example, algebraic connectivity, permutation matrices, and association schemes. The main results of this paper are twofold. First, de Klerk and Sotirov [de Klerk E, Sotirov R (2012) Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Math. Programming 133(1):75–91.] present a semidefinite program (SDP) based on permutation matrices and symmetry reduction; they show that it is incomparable to the subtour elimination linear program but generally dominates it on small instances. We provide a family of simplicial TSP instances that shows that the integrality gap of this SDP is unbounded. Second, we show that these simplicial TSP instances imply the unbounded integrality gap of every SDP relaxation of the TSP mentioned in the survey on SDP relaxations of the TSP in section 2 of Sotirov [Sotirov R (2012) SDP relaxations for some combinatorial optimization problems. Anjos MF, Lasserre JB, eds., Handbook on Semidefinite, Conic and Polynomial Optimization (Springer, New York), 795–819.]. In contrast, the subtour linear program performs perfectly on simplicial instances. The simplicial instances thus form a natural litmus test for future SDP relaxations of the TSP. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)