skip to main content


Search for: All records

Creators/Authors contains: "Wilson, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We investigated the doping and temperature evolutions of the optical response of Sr3(Ir1−xMnx)2O7single crystals with 0 ≤ x ≤ 0.36 by utilizing infrared spectroscopy. Substitution of 3dtransition metal Mn ions into Sr3Ir2O7is expected to induce an insulator-to-metal transition via the decrease in the magnitude of the spin–orbit coupling and the hole doping. In sharp contrast, our data reveal the resilience of the spin–orbit coupling and the incoherent character of the charge transport. Upon Mn substitution, an incoherent in-gap excitation at about 0.25 eV appeared with the decrease in the strength of the optical transitions between the effective total angular momentumJeffbands of the Ir ions. The resonance energies of the optical transitions between theJeffbands which are directly proportional to the magnitude of the spin–orbit coupling hardly varied. In addition to these evolutions of the low-energy response, Mn substitution led to the emergence of a distinct high-energy optical excitation at about 1.2 eV which is larger than the resonance energies of the optical transitions between theJeffbands. This observation indicates that the Mn 3dstates are located away from the Ir 5dstates in energy and that the large difference in the on-site energies of the transition metal ions is responsible for the incoherent charge transport and the robustness of the spin–orbit coupling. The effect of Mn substitution was also registered in the temperature dependence of the electronic response. The anomaly in the optical response of the parent compound observed at the antiferromagnetic transition temperature is notably suppressed in the Mn-doped compounds despite the persistence of the long-range antiferromagnetic ordering. The suppression of the spin-charge coupling could be related to charge disproportionation of the Ir ions.

     
    more » « less
  2. Abstract

    The recently discovered kagome superconductorsAV3Sb5(A= K, Rb, Cs) exhibit unusual charge-density-wave (CDW) orders with time-reversal and rotational symmetry breaking. One of the most crucial unresolved issues is identifying the symmetry of the superconductivity that develops inside the CDW phase. Theory predicts a variety of unconventional superconducting symmetries with sign-changing and chiral order parameters. Experimentally, however, superconducting phase information inAV3Sb5is still lacking. Here we report the impurity effects in CsV3Sb5using electron irradiation as a phase-sensitive probe of superconductivity. Our magnetic penetration depth measurements reveal that with increasing impurities, an anisotropic fully-gapped state changes to an isotropic full-gap state without passing through a nodal state. Furthermore, transport measurements under pressure show that the double superconducting dome in the pressure-temperature phase diagram survives against sufficient impurities. These results support that CsV3Sb5is a non-chiral, anisotropics-wave superconductor with no sign change both at ambient and under pressure.

     
    more » « less
  3. null (Ed.)
    Abstract We report on optical spectroscopic study of the Sr 3 (Ir 1- x Ru x ) 2 O 7 system over a wide doping regime. We find that the changes in the electronic structure occur in the limited range of the concentration of Ru ions where the insulator–metal transition occurs. In the insulating regime, the electronic structure associated with the effective total angular momentum J eff  = 1/2 Mott state remains robust against Ru doping, indicating the localization of the doped holes. Upon entering the metallic regime, the Mott gap collapses and the Drude-like peak with strange metallic character appears. The evolution of the electronic structure registered in the optical data can be explained in terms of a percolative insulator–metal transition. The phonon spectra display anomalous doping evolution of the lineshapes. While the phonon modes of the compounds deep in the insulating and metallic regimes are almost symmetric, those of the semiconducting compound with x  = 0.34 in close proximity to the doping-driven insulator–metal transition show a pronounced asymmetry. The temperature evolution of the phonon modes of the x  = 0.34 compound reveals the asymmetry is enhanced in the antiferromagnetic state. We discuss roles of the S  = 1 spins of the Ru ions and charge excitations for the conspicuous lineshape asymmetry of the x  = 0.34 compound. 
    more » « less
  4. ABSTRACT

    Obtaining accurately calibrated redshift distributions of photometric samples is one of the great challenges in photometric surveys like LSST, Euclid, HSC, KiDS, and DES. We present an inference methodology that combines the redshift information from the galaxy photometry with constraints from two-point functions, utilizing cross-correlations with spatially overlapping spectroscopic samples, and illustrate the approach on CosmoDC2 simulations. Our likelihood framework is designed to integrate directly into a typical large-scale structure and weak lensing analysis based on two-point functions. We discuss efficient and accurate inference techniques that allow us to scale the method to the large samples of galaxies to be expected in LSST. We consider statistical challenges like the parametrization of redshift systematics, discuss and evaluate techniques to regularize the sample redshift distributions, and investigate techniques that can help to detect and calibrate sources of systematic error using posterior predictive checks. We evaluate and forecast photometric redshift performance using data from the CosmoDC2 simulations, within which we mimic a DESI-like spectroscopic calibration sample for cross-correlations. Using a combination of spatial cross-correlations and photometry, we show that we can provide calibration of the mean of the sample redshift distribution to an accuracy of at least 0.002(1 + z), consistent with the LSST-Y1 science requirements for weak lensing and large-scale structure probes.

     
    more » « less
  5. null (Ed.)
    Abstract Magnetized plasma interactions are ubiquitous in astrophysical and laboratory plasmas. Various physical effects have been shown to be important within colliding plasma flows influenced by opposing magnetic fields, however, experimental verification of the mechanisms within the interaction region has remained elusive. Here we discuss a laser-plasma experiment whereby experimental results verify that Biermann battery generated magnetic fields are advected by Nernst flows and anisotropic pressure effects dominate these flows in a reconnection region. These fields are mapped using time-resolved proton probing in multiple directions. Various experimental, modelling and analytical techniques demonstrate the importance of anisotropic pressure in semi-collisional, high- β plasmas, causing a reduction in the magnitude of the reconnecting fields when compared to resistive processes. Anisotropic pressure dynamics are crucial in collisionless plasmas, but are often neglected in collisional plasmas. We show pressure anisotropy to be essential in maintaining the interaction layer, redistributing magnetic fields even for semi-collisional, high energy density physics (HEDP) regimes. 
    more » « less
  6. Abstract The magnetic ground state of the pyrochlore Yb 2 GaSbO 7 has not been established. The persistent spin fluctuations observed by muon spin-relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb 2 GaSbO 7 to revisit the nature of the magnetic ground state. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb 2 GaSbO 7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. This state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field μ 0 H c  ~ 1.5 T. 
    more » « less
  7. null (Ed.)
  8. Abstract The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth’s surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1–67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change. 
    more » « less