skip to main content


Search for: All records

Creators/Authors contains: "Woosley, Ryan J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the increasing threat of ocean acidification and the important role of the oceans in the global carbon cycle, highly precise, accurate, and intercomparable determination of inorganic carbon system parameters is required. Thermodynamic relationships enable the system to be fully constrained using a combination of direct measurements and calculations. However, calculations are complicated by many formulations for dissociation constants (over 120 possible combinations). To address these important issues of uncertainty and comparability, we evaluated the various combinations of constants and their (dis)agreement with direct measurements over a range of temperature (−1.9–40 ◦C), practical salinity (15–39) and pCO2 (150–1200 μatm). The results demonstrate that differences between the calculations and measurements are significantly larger than measurement uncertainties, meaning the oft-stated paradigm that one only needs to measure two parameters and the others can be calculated does not apply for climate quality ocean acidification research. The uncertainties in calculated pHt prevent climate quality pHt from being calculated from total alkalinity (TA) and dissolved inorganic carbon (DIC) and should be directly measured instead. However, climate quality TA and DIC can often be calculated using measured pH and DIC or TA respectively. Calculations are notably biased at medium-to-high pCO2 values (~500–800 μatm) implying models underestimate future ocean acidification. Uncertainty in the dissociation constants leads to significant uncertainty in the depth of the aragonite saturation horizon (>500 m in the Southern Ocean) and must be considered when studying calcium carbonate cycling. Significant improvements in the precision of the thermodynamic constants are required to improve pHt calculations. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The ocean carbonate system is critical to monitor because it plays a major role in regulating Earth's climate and marine ecosystems. It is monitored using a variety of measurements, and it is commonly understood that all components of seawater carbonate chemistry can be calculated when at least two carbonate system variables are measured. However, several recent studies have highlighted systematic discrepancies between calculated and directly measured carbonate chemistry variables and these discrepancies have large implications for efforts to measure and quantify the changing ocean carbon cycle. Given this, the Ocean Carbonate System Intercomparison Forum (OCSIF) was formed as a working group through the Ocean Carbon and Biogeochemistry program to coordinate and recommend research to quantify and/or reduce uncertainties and disagreements in measurable seawater carbonate system measurements and calculations, identify unknown or overlooked sources of these uncertainties, and provide recommendations for making progress on community efforts despite these uncertainties. With this paper we aim to (1) summarize recent progress toward quantifying and reducing carbonate system uncertainties; (2) advocate for research to further reduce and better quantify carbonate system measurement uncertainties; (3) present a small amount of new data, metadata, and analysis related to uncertainties in carbonate system measurements; and (4) restate and explain the rationales behind several OCSIF recommendations. We focus on open ocean carbonate chemistry, and caution that the considerations we discuss become further complicated in coastal, estuarine, and sedimentary environments.

     
    more » « less
  4. Abstract

    As human activities increase the atmospheric concentration of carbon dioxide (CO2), the oceans are known to absorb a significant portion. The Arctic Ocean has long been considered to have enormous potential to sequester anthropogenic CO2, and mitigate emissions. The frigid waters make CO2more soluble, and as sea ice melts, greater surface area is exposed to absorb CO2. However, sparse data have made quantifying the amount of anthropogenic CO2in the Arctic difficult, stimulating much debate over the basin's contribution to CO2sequestration from the atmosphere. Using three separate cruises in 1994, 2005, and 2015 in the Canada and Makarov basins, we analyze the decadal variability in anthropogenic CO2uptake in the central western Arctic. Here we show, from direct carbon system measurements spanning two decades, that despite increased atmospheric CO2, total dissolved inorganic carbon has actually decreased, with minimal anthropogenic CO2uptake. The reduction in dissolved CO2results from a dilution of total alkalinity by increased freshwater supply, particularly river water. Changes in the freshwater budget of the western Arctic override its uptake potential, resulting in a weak sink, or possibly source of CO2.

     
    more » « less
  5. null (Ed.)
    Abstract. The Global Ocean Data Analysis Project (GLODAP) is asynthesis effort providing regular compilations of surface-to-bottom oceanbiogeochemical data, with an emphasis on seawater inorganic carbon chemistryand related variables determined through chemical analysis of seawatersamples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019.The major changes are data from 106 new cruises added, extension of timecoverage to 2019, and the inclusion of available (also for historicalcruises) discrete fugacity of CO2 (fCO2) values in the mergedproduct files. GLODAPv2.2020 now includes measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. Thedata for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate,phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12,CFC-113, and CCl4) have undergone extensive quality control with afocus on systematic evaluation of bias. The data are available in twoformats: (i) as submitted by the data originator but updated to WOCEexchange format and (ii) as a merged data product with adjustments appliedto minimize bias. These adjustments were derived by comparing the data fromthe 106 new cruises with the data from the 840 quality-controlled cruises ofthe GLODAPv2.2019 data product using crossover analysis. Comparisons toempirical algorithm estimates provided additional context for adjustmentdecisions; this is new to this version. The adjustments are intended toremove potential biases from errors related to measurement, calibration, anddata-handling practices without removing known or likely time trends orvariations in the variables evaluated. The compiled and adjusted dataproduct is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate,4 µmol kg−1 in dissolved inorganic carbon, 4 µmol kg−1in total alkalinity, 0.01–0.02 in pH (depending on region), and 5 % inthe halogenated transient tracers. The other variables included in thecompilation, such as isotopic tracers and discrete fCO2, were notsubjected to bias comparison or adjustments. The original data and their documentation and DOI codes are available at theOcean Carbon Data System of NOAA NCEI(https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/, lastaccess: 20 June 2020). This site also provides access to the merged dataproduct, which is provided as a single global file and as four regional ones– the Arctic, Atlantic, Indian, and Pacific oceans –under https://doi.org/10.25921/2c8h-sa89 (Olsen et al., 2020). Thesebias-adjusted product files also include significant ancillary andapproximated data. These were obtained by interpolation of, or calculationfrom, measured data. This living data update documents the GLODAPv2.2020methods and provides a broad overview of the secondary quality controlprocedures and results. 
    more » « less
  6. Abstract

    A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.

     
    more » « less