skip to main content


Search for: All records

Creators/Authors contains: "Wright, Angus H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a Hubble Space Telescope (HST) weak gravitational lensing study of nine distant and massive galaxy clusters with redshifts 1.0 ≲  z  ≲ 1.7 ( z median  = 1.4) and Sunyaev Zel’dovich (SZ) detection significance ξ  > 6.0 from the South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We measured weak lensing galaxy shapes in HST/ACS F 606 W and F 814 W images and used additional observations from HST/WFC3 in F 110 W and VLT/FORS2 in U HIGH to preferentially select background galaxies at z  ≳ 1.8, achieving a high purity. We combined recent redshift estimates from the CANDELS/3D-HST and HUDF fields to infer an improved estimate of the source redshift distribution. We measured weak lensing masses by fitting the tangential reduced shear profiles with spherical Navarro-Frenk-White (NFW) models. We obtained the largest lensing mass in our sample for the cluster SPT-CL J2040−4451, thereby confirming earlier results that suggest a high lensing mass of this cluster compared to X-ray and SZ mass measurements. Combining our weak lensing mass constraints with results obtained by previous studies for lower redshift clusters, we extended the calibration of the scaling relation between the unbiased SZ detection significance ζ and the cluster mass for the SPT-SZ survey out to higher redshifts. We found that the mass scale inferred from our highest redshift bin (1.2 <  z  < 1.7) is consistent with an extrapolation of constraints derived from lower redshifts, albeit with large statistical uncertainties. Thus, our results show a similar tendency as found in previous studies, where the cluster mass scale derived from the weak lensing data is lower than the mass scale expected in a Planckν ΛCDM (i.e. ν Λ cold dark matter) cosmology given the SPT-SZ cluster number counts. 
    more » « less
  2. We present a map of the total intrinsic reddening across ≃ 90 deg2 of the Large Magellanic Cloud (LMC) derived using optical (ugriz) and near-infrared (IR; YJKs) spectral energy distributions (SEDs) of background galaxies. The reddening map is created from a sample of 222,752 early-type galaxies based on the lephare χ2 minimization SED-fitting routine. We find excellent agreement between the regions of enhanced intrinsic reddening across the central (4 × 4 deg2) region of the LMC and the morphology of the low-level pervasive dust emission as traced by far-IR emission. In addition, we are able to distinguish smaller, isolated enhancements that are coincident with known star-forming regions and the clustering of young stars observed in morphology maps. The level of reddening associated with the molecular ridge south of 30 Doradus is, however, smaller than in the literature reddening maps. The reduced number of galaxies detected in this region, due to high extinction and crowding, may bias our results towards lower reddening values. Our map is consistent with maps derived from red clump stars and from the analysis of the star formation history across the LMC. This study represents one of the first large-scale categorisations of extragalactic sources behind the LMC and as such we provide the lephare outputs for our full sample of ∼ 2.5 million sources. 
    more » « less
  3. We measured the cross-correlation between galaxy weak lensing data from the Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB) lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the Planck Legacy survey. We used two samples of source galaxies, selected with photometric redshifts, (0.1 <  z B  < 1.2) and (1.2 <  z B  < 2), which produce a combined detection significance of the CMB lensing and weak galaxy lensing cross-spectrum of 7.7 σ . With the lower redshift galaxy sample, for which the cross-correlation was detected at a significance of 5.3 σ , we present joint cosmological constraints on the matter density parameter, Ω m , and the matter fluctuation amplitude parameter, σ 8 , marginalising over three nuisance parameters that model our uncertainty in the redshift and shear calibration as well as the intrinsic alignment of galaxies. We find our measurement to be consistent with the best-fitting flat ΛCDM cosmological models from both Planck and KiDS-1000. We demonstrate the capacity of CMB weak lensing cross-correlations to set constraints on either the redshift or shear calibration by analysing a previously unused high-redshift KiDS galaxy sample (1.2 <  z B  < 2), with the cross-correlation detected at a significance of 7 σ . This analysis provides an independent assessment for the accuracy of redshift measurements in a regime that is challenging to calibrate directly owing to known incompleteness in spectroscopic surveys. 
    more » « less