skip to main content


Search for: All records

Creators/Authors contains: "Wright, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Variation in light and temperature can influence the genetic diversity and structure of marine plankton communities. While open-ocean plankton communities receive much scientific attention, little is known about how environmental variation affects plankton communities on tropical coral reefs. Here, we characterize eukaryotic plankton communities on coral reefs across the Bocas del Toro Archipelago, Panama´. Temperature loggers were deployed, and midday light levels were measured to quantify environmental differences across reefs at four inshore and four offshore sites (Inshore = Punta Donato, Smithsonian Tropical Research Institute (STRI) Point, Cristobal, Punta Laurel and Offshore = Drago Mar, Bastimentos North, Bastimentos South, and Cayo de Agua). Triplicate vertical plankton tows were collected midday, and high-throughput 18S ribosomal DNA metabarcoding was leveraged to investigate the relationship between eukaryotic plankton community structure and inshore/offshore reef environments. Plankton communities from STRI Point were additionally characterized in the morning (* 08:00), midday (* 12:00), and late-day (* 16:00) to quantify temporal variation within a single site. We found that inshore reefs experienced higher average seawater temperatures, while offshore sites offered higher light levels, presumably associated with reduced water turbidity on reefs further from shore. These significant environmental differences between inshore and offshore reefs corresponded with overall plankton community differences. We also found that temporal variation played a structuring role within these plankton communities, and conclude that time of community sampling is an important consideration for future studies. Follow-up studies focusing on more intensive sampling efforts across space and time, coupled with techniques that can detect more subtle genetic differences between and within communities will more fully capture plankton dynamics in this region and beyond. 
    more » « less
  2. Abstract

    Thousands of sequenced genomes are now publicly available capturing a significant amount of natural variation within plant species; yet, much of these data remain inaccessible to researchers without significant bioinformatics experience. Here, we present a webtool called ViVa (Visualizing Variation) which aims to empower any researcher to take advantage of the amazing genetic resource collected in theArabidopsis thaliana1001 Genomes Project (http://1001genomes.org). ViVa facilitates data mining on the gene, gene family, or gene network level. To test the utility and accessibility of ViVa, we assembled a team with a range of expertise within biology and bioinformatics to analyze the natural variation within the well‐studied nuclear auxin signaling pathway. Our analysis has provided further confirmation of existing knowledge and has also helped generate new hypotheses regarding this well‐studied pathway. These results highlight how natural variation could be used to generate and test hypotheses about less‐studied gene families and networks, especially when paired with biochemical and genetic characterization. ViVa is also readily extensible to databases of interspecific genetic variation in plants as well as other organisms, such as the 3,000 Rice Genomes Project (http://snp-seek.irri.org/) and human genetic variation (https://www.ncbi.nlm.nih.gov/clinvar/).

     
    more » « less
  3. With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them. 
    more » « less
  4. Abstract

    Volcanoes are hazardous to local and global populations, but only a fraction are continuously monitored by ground‐based sensors. For example, in Latin America, more than 60% of Holocene volcanoes are unmonitored, meaning long‐term multiparameter data sets of volcanic activity are rare and sparse. We use satellite observations of degassing, thermal anomalies, and surface deformation spanning 17 years at 47 of the most active volcanoes in Latin America and compare these data sets to ground‐based observations archived by the Global Volcanism Program. This first comparison of multisatellite time series on a regional scale provides information regarding volcanic behavior during, noneruptive, pre‐eruptive, syneruptive, and posteruptive periods. For example, at Copahue volcano, deviations from background activity in all three types of satellite measurements were manifested months to years in advance of renewed eruptive activity in 2012. By quantifying the amount of degassing, thermal output, and deformation measured at each of these volcanoes, we test the classification of these volcanoes as open or closed volcanic systems. We find that ~28% of the volcanoes do not fall into either classification, and the rest show elements of both, demonstrating a dynamic range of behavior that can change over time. Finally, we recommend how volcano monitoring could be improved through better coordination of available satellite‐based capabilities and new instruments.

     
    more » « less