skip to main content


Search for: All records

Creators/Authors contains: "Wu, Hoi Ting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Self-assembled Fe4 L 6 cage complexes with variable internal functions can be synthesized from a 2,7-dibromocarbazole ligand scaffold, which orients six functional groups to the cage interior. Both ethylthiomethylether and ethyldimethylamino groups can be incorporated. The cages show strong ligand-centered fluorescence emission and a broad range of guest binding properties. Coencapsulation of neutral organic guests is favored in the larger, unfunctionalized cage cavity, whereas the thioether cage has a more sterically hindered cavity that favors 1 : 1 guest binding. Binding affinities up to 10 6 M −1 in CH3 CN are seen. The dimethylamino cage is more complex, as the internal amines display partial protonation and can be deprotonated by amine bases. This amine cage displays affinity for a broad range of neutral organic substrates, with affinities and stoichiometries comparable to that of the similarly sized thioether cage. These species show that simple variations in ligand backbone allow variations in the number and type of functions that can be displayed towards the cavity of self-assembled hosts, which will have applications in biomimetic sensing, catalysis and molecular recognition. 
    more » « less
  2. The ability to understand the function of a protein often relies on knowledge about its detailed structure. Sometimes, seemingly insignificant changes in the primary structure of a protein, like an amino acid substitution, can completely disrupt a protein's function. Long-lived proteins (LLPs), which can be found in critical areas of the human body, like the brain and eye, are especially susceptible to primary sequence alterations in the form of isomerization and epimerization. Because long-lived proteins do not have the corrective regeneration capabilities of most other proteins, points of isomerism and epimerization that accumulate within the proteins can severely hamper their functions and can lead to serious diseases like Alzheimer's disease, cancer and cataracts. Whereas tandem mass spectrometry (MS/MS) in the form of collision-induced dissociation (CID) generally excels at peptide characterization, MS/MS often struggles to pinpoint modifications within LLPs, especially when the differences are only isomeric or epimeric in nature. One of the most prevalent and difficult-to-identify modifications is that of aspartic acid between its four isomeric forms: l -Asp, l -isoAsp, d -Asp, and d -isoAsp. In this study, peptides containing isomers of Asp were analyzed by charge transfer dissociation (CTD) mass spectrometry to identify spectral features that could discriminate between the different isomers. For the four isomers of Asp in three model peptides, CTD produced diagnostic ions of the form c n +57 on the N-terminal side of iso-Asp residues, but not on the N-terminal side of Asp residues. Using CTD, the l - and d forms of Asp and isoAsp could also be differentiated based on the relative abundance of y - and z ions on the C-terminal side of Asp residues. Differentiation was accomplished through a chiral discrimination factor, R , which compares an ion ratio in a spectrum of one epimer or isomer to the same ion ratio in the spectrum of a different epimer or isomer. The R values obtained using CTD are as robust and statistically significant as other fragmentation techniques, like radical directed dissociation (RDD). In summary, the extent of backbone and side-chain fragments produced by CTD enabled the differentiation of isomers and epimers of Asp in a variety of peptides. 
    more » « less
  3. Abstract

    Spacious M4L6tetrahedra can act as catalytic inhibitors for base‐mediated reactions. Upon adding only 5 % of a self‐assembled Fe4L6cage complex, the conversion of the conjugate addition between ethylcyanoacetate and β‐nitrostyrene catalyzed by proton sponge can be reduced from 83 % after 75 mins at ambient temperature to <1 % under identical conditions. The mechanism of the catalytic inhibition is unusual: the octacationic Fe4L6cage increases the acidity of exogenous water in the acetonitrile reaction solvent by favorably binding the conjugate acid of the basic catalyst. The inhibition only occurs for Fe4L6hosts with spacious internal cavities: minimal inhibition is seen with smaller tetrahedra or Fe2L3helicates. The surprising tendency of the cationic cage to preferentially bind protonated, cationic ammonium guests is quantified via the comprehensive modeling of spectrophotometric titration datasets.

     
    more » « less
  4. Solvochromatic effects are most frequently associated with solution-phase phenomena. However, in the gas phase, the absence of solvent leads to intramolecular solvation that can be driven by strong forces including hydrogen bonds and ion–dipole interactions. Here we examine whether isomerization of a single residue in a peptide results in structural changes sufficient to shift the absorption of light by an appended chromophore. By carrying out the experiments inside a mass spectrometer, we can easily monitor photodissociation yield as a readout for chromophore excitation. A series of peptides of different lengths, charge states, and position and identity of the isomerized residue were examined by excitation with both 266 and 213 nm light. The results reveal that differences in intramolecular solvation do lead to solvochromatic shifts in many cases. In addition, the primary product following photoexcitation is a radical. Ion–molecule reactions with this radical and adventitious oxygen were monitored and also found to vary as a function of isomeric state. In this case, differences in intramolecular solvation alter the availability of the reactive radical. Overall, the results reveal that small changes in a single amino acid can influence the overall structural ensemble sufficient to alter the efficiency of multiple gas-phase reactions. 
    more » « less
  5. Recent studies have illuminated connections between spontaneous chemical reactions that cause isomerization at specific protein residues and various age-related diseases including cataracts and Alzheimer's. These discoveries provide impetus for better analytical methods to detect and characterize isomerization in proteins, which will enable a more complete understanding of the underlying relationship between these modifications and biology. Herein we employ a two-dimensional approach for identification of peptides isomers that also includes pinpointing of the modified residue. Collision-induced dissociation is used to fragment ions in the first dimension, followed by separation of the fragments with travelling-wave ion mobility. By comparing data obtained from both isomers, differences in either fragment-ion intensities or arrival-time distributions can be used to identify isomeric forms and the specific site of modification within the peptides. Synthetic peptide standards with sequences derived from long-lived proteins in the eye lens and isomerization at serine, aspartic acid, and glutamic acid were examined. Although both dimensions are capable of isomer identification, ion mobility is much better at determining the site of modification. In general, separation of isomeric forms by ion mobility is possible but does not follow predictable trends dictated by sequence or fragment-ion length. In most cases, however, the site of isomerization can be precisely determined. 
    more » « less
  6. Rationale

    The function of a protein or the binding affinity of an antibody can be substantially altered by the replacement of leucine (Leu) with isoleucine (Ile), and vice versa, so the ability to identify the correct isomer using mass spectrometry can help resolve important biological questions. Tandem mass spectrometry approaches for Leu/Ile (Xle) discrimination have been developed, but they all have certain limitations.

    Methods

    Four model peptides and two wild‐type peptide sequences containing either Leu or Ile residues were subjected to charge transfer dissociation (CTD) mass spectrometry on a modified three‐dimensional ion trap. The peptides were analyzed in both the 1+ and 2+ charge states, and the results were compared to conventional collision‐induced dissociation spectra of the same peptides obtained using the same instrument.

    Results

    CTD resulted in 100% sequence coverage for each of the studied peptides and provided a variety of side‐chain cleavages, includingd,wandvions. Using CTD, reliabledandwions of Xle residues were observed more than 80% of the time. When present,dions are typically greater than 10% of the abundance of the correspondingaions from which they derive, andwions are typically more abundant than thezions from which they derive.

    Conclusions

    CTD has the benefit of being applicable to both 1+ and 2+ precursor ions, and the overall performance is comparable to that of other high‐energy activation techniques like hot electron capture dissociation and UV photodissociation. CTD does not require chemical modifications of the precursor peptides, nor does it require additional levels of isolation and fragmentation.

     
    more » « less
  7. Abstract

    Appending functional groups to the exterior of Zn4L4self‐assembled cages allows gated control of anion binding. While the unfunctionalized cages contain aryl groups in the ligand that can freely rotate, attaching inert functional groups creates a “doorstop”, preventing rotation and slowing the guest exchange rate, even though the interiors of the host cavities are identically structured. The effects on anion exchange are subtle and depend on multiple factors, including anion size, the nature of the leaving anion, and the electron‐withdrawing ability and steric bulk of the pendant groups. Multiple exchange mechanisms occur, and the nature of the external groups controls associative and dissociative exchange processes: these bulky groups affect both anion egress and ingress, introducing an extra layer of selectivity to the exchange. Small changes can have large effects: affinities for anions as similar as PF6and SbF6can vary by as much as 400‐fold between identically sized cavities.

     
    more » « less
  8. Abstract

    A self‐assembled FeII4L6cage was synthesized with 12 internal amines in the cavity. The cage forms as the dodeca‐ammonium salt, despite the cage carrying an overall 8+ charge at the metal centers, extracting protons from displaced water in the reaction. Despite this, the basicity of the internal amines is lower than their counterparts in free solution. The 12 amines have a sliding scale of basicity, with a ≈6 pKaunit difference between the first and last protons to be removed. This moderation of side‐chain basicity in an active site is a hallmark of enzymatic catalysis.

     
    more » « less