skip to main content


Search for: All records

Creators/Authors contains: "Wu, Q"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The spectral line profile of the atomic oxygen O1D23P2transition near 6300 Å in the airglow has been used for more than 50 years to extract neutral wind and temperature information from the F‐region ionosphere. A new spectral model and recent samples of this airglow emission in the presence of the nearby lambda‐doubled OH Meinel (9‐3) P2(2.5) emission lines underscores earlier cautions that OH can significantly distort the OI line center position and line width observed using a single‐etalon Fabry‐Perot interferometer (FPI). The consequence of these profile distortions in terms of the emission profile line width and Doppler position is a strong function of the selected etalon plate spacing. Single‐etalon Fabry‐Perot interferometers placed in the field for thermospheric measurements have widely varying etalon spacings, so that systematic wind biases caused by the OH line positions differ between instruments, complicating comparisons between sites. Based on the best current determinations of the OH and O1D line positions, the ideal gap for a single‐etalon FPI wind measurements places the OH emissions in the wings of the O1D spectral line profile. Optical systems that can accommodate prefilters with square passbands less than ∼3 Å in the optical beam can effectively block the OH contamination. When that is not possible, a method to fit for OH contamination and remove it in the spectral background of an active Fabry‐Perot system is evaluated.

     
    more » « less
  2. Abstract

    Midlatitude thermospheric wind observations from the Michelson Interferometer for Global High‐resolution Thermospheric Imaging on board the Ionospheric Connections Explorer (ICON/MIGHTI) and from the ground‐based Boulder, Urbana, Millstone Hill and Morocco Fabry‐Perot interferometers (FPIs) are used to study a distinct solar local time (SLT) evolution in the nighttime wind field around the December solstice period. Our results show, to the best of our knowledge for the first time, strong non‐migrating tides in midlatitude thermospheric winds using coincident from different observing platforms. These observations exhibited a structure of strong (∼50–150 m/s) eastward and southward winds in the pre‐midnight sector (20:00–23:00 SLT) and in the post‐midnight sector (02:00–03:00 SLT), with a strong suppression around midnight. Tidal analysis of ICON/MIGHTI data revealed that the signature before midnight was driven by diurnal (D0, DE1, DE2, DW2) and semidiurnal (SE2, SE3, SW1, SW4) tides, and that strong terdiurnal (TE2, TW1, TW2, TW5) and quatradiurnal (QW2, QW3, QW6) tides were important contributors in the mid‐ and post‐midnight sectors. ICON/MIGHTI tidal reconstructions successfully reproduced the salient structures observed by the FPI and showed a longitudinal dual‐peak variation with peak magnitudes around 200°–120°W and 30°W–60°E. The signature of the structure extended along the south‐to‐north direction from lower latitudes, migrated to earlier local times with increasing latitude, and strengthened above 30°N. Tidal analysis using historical FPI data revealed that these structures were often seen during previous December solstices, and that they are much stronger for lower solar flux conditions, consistent with an upward‐propagating tidal origin.

     
    more » « less
  3. Abstract

    The Formosa Satellite‐7/Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (FORMOSAT‐7/COSMIC‐2, F7/C2) Tri‐GNSS Radio Occultation System observes both Global Positioning System (GPS) and GLObalnaya NAvigazionnaya Sputnikovaya Sistema (GLONASS) slant total electron content (TEC). Space‐based TEC observations have historically relied on GPS signals, and the processing methodologies and data quality of GLONASS absolute TEC observations are thus less well established. We present a description of the differences in the processing for the F7/C2 GLONASS absolute TEC observations. This primarily entails estimation of a paired receiver‐transmitter differential code bias, which is needed due to the GLONASS usage of frequency‐division multiple access. We additionally perform a validation of the F7/C2 GLONASS absolute TEC observations through comparison with colocated F7/C2 GPS absolute TEC observations. Based on this comparison, we estimate the GLONASS absolute TEC error to be ∼2.6 TEC units (TECU), which is similar to previous estimates of the F7/C2 GPS absolute TEC error (∼2.5 TECU). This demonstrates that the F7/C2 GLONASS absolute TEC observations are generally similar in quality to the F7/C2 GPS absolute TEC observations, and are suitable for use by the operational and scientific communities.

     
    more » « less
  4. null (Ed.)
    Abstract We study a Morita-equivalent version of the Zariski cancellation problem. 
    more » « less
  5. null (Ed.)
    Multi- and hyperspectral imaging modalities encompass a growing number of spectral techniques that find many applications in geospatial, biomedical and machine vision fields. The rapidly increasing number of applications requires a convenient easy-to-navigate software that can be used by new and experienced users to analyze data, develop, apply, and deploy novel algorithms. Herein, we present our platform, IDCube that performs essential operations in hyperspectral data analysis to realize the full potential of spectral imaging. The strength of the software lies in its interactive features that enable the users to optimize parameters and obtain visual input for the user. The entire software can be operated without any prior programming skills allowing interactive sessions of raw and processed data. IDCube Lite, a free version of the software described in the paper, has many benefits compared to existing packages and offers structural flexibility to discover new hidden features. 
    more » « less