skip to main content


Search for: All records

Creators/Authors contains: "Wu, Yue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 11, 2025
  2. We study the spectral energy transfer due to wave–triad interactions in the Garrett–Munk spectrum of internal gravity waves based on a numerical evaluation of the collision integral in the wave kinetic equation. Our numerical evaluation builds on the reduction of the collision integral on the resonant manifold for a horizontally isotropic spectrum. We evaluate directly the downscale energy flux available for ocean mixing, whose value is in close agreement with the finescale parameterization. We further decompose the energy transfer into contributions from different mechanisms, including local interactions and three types of non-local interactions, namely parametric subharmonic instability, elastic scattering (ES) and induced diffusion (ID). Through analysis on the role of each mechanism, we resolve two long-standing paradoxes regarding the mechanism for forward cascade in frequency and zero ID flux for the GM76 spectrum. In addition, our analysis estimates the contribution of each mechanism to the energy transfer in each spectral direction, and reveals new understanding of the importance of local interactions and ES in the energy transfer.

     
    more » « less
    Free, publicly-accessible full text available November 25, 2024
  3. The Minimum-Weight Perfect Matching (MWPM) decoder is widely used in Quantum Error Correction (QEC) decoding. Despite its high accuracy, existing implementations of the MWPM decoder cannot catch up with quantum hardware, e.g., 1 million measurements per second for superconducting qubits. They suffer from a backlog of measurements that grows exponentially and as a result, cannot realize the power of quantum computation. We design and implement a fast MWPM decoder, called Parity Blossom, which reaches a time complexity almost proportional to the number of defect measurements. We further design and implement a parallel version of Parity Blossom called Fusion Blossom. Given a practical circuit-level noise of 0.1%, Fusion Blossom can decode a million measurement rounds per second up to a code distance of 33. Fusion Blossom also supports stream decoding mode that reaches a 0.7 ms decoding latency at code distance 21 regardless of the measurement rounds. 
    more » « less
    Free, publicly-accessible full text available September 21, 2024
  4. Free, publicly-accessible full text available September 13, 2024
  5. Seven different miniaturized low-power isolation transformer topologies are analyzed using FEA simulation. Performance optimizations of fixed-area transformers with different operation frequencies and heights, with and without magnetic cores, are performed. The comparison of optimization results reveals performance potential and trade-offs of the different topologies under different restrictions. More than 1 W of power transfer is possible at more than 85% efficiency in 1 mm2 of footprint area for several different topologies. 
    more » « less
  6. Abstract

    Microfluidic devices have found extensive applications in mechanical, biomedical, chemical, and materials research. However, the high initial cost, low resolution, inferior feature fidelity, poor repeatability, rough surface finish, and long turn-around time of traditional prototyping methods limit their wider adoption. In this study, a strategic approach to a deterministic fabrication process based on in-situ image analysis and intermittent flow control called image-guided in-situ maskless lithography (IGIs-ML), has been proposed to overcome these challenges. By using dynamic image analysis and integrated flow control, IGIs-ML provides superior repeatability and fidelity of densely packed features across a large area and multiple devices. This general and robust approach enables the fabrication of a wide variety of microfluidic devices and resolves critical proximity effect and size limitations in rapid prototyping. The affordability and reliability of IGIs-ML make it a powerful tool for exploring the design space beyond the capabilities of traditional rapid prototyping.

     
    more » « less
  7. Free, publicly-accessible full text available June 1, 2024
  8. Hurricane Harvey in 2017 marked an important transition where many disaster victims used social media rather than the overloaded 911 system to seek rescue. This article presents a machine-learning-based detector of rescue requests from Harvey-related Twitter messages, which differentiates itself from existing ones by accounting for the potential impacts of ZIP codes on both the preparation of training samples and the performance of different machine learning models. We investigate how the outcomes of our ZIP code filtering differ from those of a recent, comparable study in terms of generating training data for machine learning models. Following this, experiments are conducted to test how the existence of ZIP codes would affect the performance of machine learning models by simulating different percentages of ZIP-code-tagged positive samples. The findings show that (1) all machine learning classifiers except K-nearest neighbors and Naïve Bayes achieve state-of-the-art performance in detecting rescue requests from social media; (2) using ZIP code filtering could increase the effectiveness of gathering rescue requests for training machine learning models; (3) machine learning models are better able to identify rescue requests that are associated with ZIP codes. We thereby encourage every rescue-seeking victim to include ZIP codes when posting messages on social media. This study is a useful addition to the literature and can be helpful for first responders to rescue disaster victims more efficiently. 
    more » « less
  9. Abstract

    Executing quantum algorithms on error-corrected logical qubits is a critical step for scalable quantum computing, but the requisite numbers of qubits and physical error rates are demanding for current experimental hardware. Recently, the development of error correcting codes tailored to particular physical noise models has helped relax these requirements. In this work, we propose a qubit encoding and gate protocol for171Yb neutral atom qubits that converts the dominant physical errors into erasures, that is, errors in known locations. The key idea is to encode qubits in a metastable electronic level, such that gate errors predominantly result in transitions to disjoint subspaces whose populations can be continuously monitored via fluorescence. We estimate that 98% of errors can be converted into erasures. We quantify the benefit of this approach via circuit-level simulations of the surface code, finding a threshold increase from 0.937% to 4.15%. We also observe a larger code distance near the threshold, leading to a faster decrease in the logical error rate for the same number of physical qubits, which is important for near-term implementations. Erasure conversion should benefit any error correcting code, and may also be applied to design new gates and encodings in other qubit platforms.

     
    more » « less