skip to main content


Search for: All records

Creators/Authors contains: "Xia, Rui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A genetic locus–involved Mimulus speciation encodes a set of small regulatory RNAs. 
    more » « less
  2. Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondarysmall interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of trans-species gene silencing at the host–pathogen interface are discussed. 
    more » « less
  3. null (Ed.)
  4. Summary

    MicroRNAs (miRNAs) are 20‐24 nucleotides (nt) small RNAs functioning in eukaryotes. The length and sequence of miRNAs are not only related to the biogenesis of miRNAs but are also important for downstream physiological processes like ta‐siRNA production. To investigate these roles, it is informative to create small mutations within mature miRNA sequences. We used both TALENs (transcription activator‐like effector nucleases) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9) to introduce heritable base pair mutations in mature miRNA sequences. For rice, TALEN constructs were built targeting five different mature miRNA sequences and yielding heritable mutations. Among the resulting mutants,mir390mutant showed a severe defect in the shoot apical meristem (SAM), a shootless phenotype, which could be rescued by the wild‐typeMIR390. Small RNA sequencing showed the two base pair deletion inmir390substantially interfered with miR390 biogenesis. In Arabidopsis, CRISPR/Cas9‐mediated editing of the miR160* strand confirmed that the asymmetric structure of miRNA is not a necessary determinant for secondary siRNA production. CRISPR/Cas9 with double‐guide RNAs successfully generatedmir160anull mutants with fragment deletions, at a higher efficiency than a single‐guide RNA. The difference between the phenotypic severity ofmiR160amutants in Col‐0 versus Ler backgrounds highlights a diverged role for miR160a in different ecotypes. Overall, we demonstrated that TALENs and CRISPR/Cas9 are both effective in modifying miRNA precursor structure, disrupting miRNA processing and generating miRNA null mutant plants.

     
    more » « less
  5. Summary

    In grasses, two types of phased, small interfering RNAs (phasiRNAs) are expressed largely in young, developing anthers. They are 21 or 24 nucleotides (nt) in length and are triggered by miR2118 or miR2275, respectively. However, most of their functions and activities are not fully understood.

    We performed comparative genomic analysis of their source loci (PHAS) in fiveOryzagenomes and combined this with analysis of high‐throughput sRNA and degradome datasets. In total, we identified 8216 21‐PHASand 626 24‐PHASloci. Local tandem and segmental duplications mainly contributed to the expansion and supercluster distribution of the 21‐PHASloci. Despite their relatively conserved genomic positions,PHASsequences diverged rapidly, except for the miR2118/2275 target sites, which were under strong selection for conservation.

    We found that 21‐nt phasiRNAs with a 5′‐terminal uridine (U) demonstratedcis‐cleavage atPHASprecursors, and thesecis‐acting sites were also variable among close species. miR2118 could trigger phasiRNA production from its own antisense transcript and the derived phasiRNAs might reversibly regulate miR2118 precursors.

    We hypothesised that successful initiation of phasiRNA biogenesis is conservatively maintained, while phasiRNA products diverged quickly and are not individually conserved. In particular, phasiRNA production is under the control of multiple reciprocal regulation mechanisms.

     
    more » « less