skip to main content


Search for: All records

Creators/Authors contains: "Xu, Nansheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Long duration electricity storage (LDES) with 10+ hour cycle duration is an economically competitive strategy to accelerate the penetration of renewable energy into the utility market. Unfortunately, none of the available energy storage technologies can meet the LDES requirements in terms of duration and cost. The newly emerged solid-oxide iron–air batteries (SOIABs) with energy-dense solid iron as an energy storage material have inherent advantages for LDES applications. Herein, we report for the first time the LDES capability of SOIABs even at a laboratory scale. We show that SOIABs with an Ir-catalyzed Fe-bed can achieve excellent energy density (625 W h kg −1 ), long cycle duration (12.5 h) and high round-trip efficiency (∼90%) under LDES-related working conditions. Given the excellent low-rate performance and the use of earth-abundant, low-cost Fe as an energy storage material, we conclude that the SOIAB is a well-suited battery technology for LDES applications. 
    more » « less
  2. Abstract

    Long duration energy storage (LDES) is an economically attractive approach to accelerating clean renewable energy deployment. The newly emerged solid oxide iron–air battery (SOIAB) is intrinsically suited for LDES applications due to its excellent low‐rate performance (high‐capacity with high efficiency) and use of low‐cost and sustainable materials. However, rechargeability and durability of SOIAB are critically limited by the slow kinetics in iron/iron‐oxide redox couples. Here the use of combined proton‐conducting BaZr0.4Ce0.4Y0.1Yb0.1O3(BZC4YYb) and reduction‐promoting catalyst Ir to address the kinetic issues, is reported. It is shown that, benefiting from the facilitated H+diffusion and boosted FeOx‐reduction kinetics, the battery operated under 550 °C, 50% Fe‐utilization and 0.2 C, exhibits a discharge specific energy density of 601.9 Wh kg–1‐Fe with a round‐trip efficiency (RTE) of 82.9% for 250 h of a cycle duration of 2.5 h. Under 500 °C, 50% Fe‐utilization and 0.2 C, the same battery exhibits 520 Wh kg–1‐Fe discharge energy density with an RTE of 61.8% for 500 h. This level of energy storage performance promises that SOIAB is a strong candidate for LDES applications.

     
    more » « less