skip to main content


Search for: All records

Creators/Authors contains: "Xu, Patricia A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Whereas vision dominates sensing in robots, animals with limited vision deftly navigate their environment using other forms of perception, such as touch. Efforts have been made to apply artificial skins with tactile sensing to robots for similarly sophisticated mobile and manipulative skills. The ability to functionally mimic the afferent sensory neural network, required for distributed sensing and communication networks throughout the body, is still missing. This limitation is partially due to the lack of cointegration of the mechanosensors in the body of the robot. Here, lacings of stretchable optical fibers distributed throughout 3D-printed elastomer frameworks created a cointegrated body, sensing, and communication network. This soft, functional structure could localize deformation with submillimeter positional accuracy (error of 0.71 millimeter) and sub-Newton force resolution (~0.3 newton). 
    more » « less
  2. Abstract

    Advancements in 3D additive manufacturing have spurred the development of effective patient‐specific medical devices. Prior applications are limited to hard materials, however, with few implementations of soft devices that better match the properties of natural tissue. This paper introduces a rapid, low cost, and scalable process for fabricating soft, personalized medical implants via stereolithography of elastomeric polyurethane resin. The effectiveness of this approach is demonstrated by designing and manufacturing patient‐specific endocardial implants. These devices occlude the left atrial appendage, a complex structure within the heart prone to blood clot formation in patients with atrial fibrillation. Existing occluders permit residual blood flow and can damage neighboring tissues. Here, the robust mechanical properties of the hollow, printed geometries are characterized and stable device anchoring through in vitro benchtop testing is confirmed. The soft, patient‐specific devices outperform non‐patient‐specific devices in embolism and occlusion experiments, as well as in computational fluid dynamics simulations.

     
    more » « less