skip to main content


Search for: All records

Creators/Authors contains: "Yan, Yanfa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 20, 2024
  2. Free, publicly-accessible full text available August 16, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. A phosphorus-containing Lewis-base molecule passivates and bridges perovskite grain boundaries and interfaces. 
    more » « less
  6. Abstract

    Bandgap gradient is a proven approach for improving the open-circuit voltages (VOCs) in Cu(In,Ga)Se2and Cu(Zn,Sn)Se2thin-film solar cells, but has not been realized in Cd(Se,Te) thin-film solar cells, a leading thin-film solar cell technology in the photovoltaic market. Here, we demonstrate the realization of a bandgap gradient in Cd(Se,Te) thin-film solar cells by introducing a Cd(O,S,Se,Te) region with the same crystal structure of the absorber near the front junction. The formation of such a region is enabled by incorporating oxygenated CdS and CdSe layers. We show that the introduction of the bandgap gradient reduces the hole density in the front junction region and introduces a small spike in the band alignment between this and the absorber regions, effectively suppressing the nonradiative recombination therein and leading to improved VOCs in Cd(Se,Te) solar cells using commercial SnO2buffers. A champion device achieves an efficiency of 20.03% with a VOCof 0.863 V.

     
    more » « less
  7. null (Ed.)