skip to main content


Search for: All records

Creators/Authors contains: "Yan, Zichun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To investigate the influence of manganese substitution on the saturation magnetization of manganese ferrite nanoparticles, samples with various compositions (MnxFe3−xO4,x = 0, 0.25, 0.5, 0.75, and 1) were synthesized and characterized. The saturation magnetization of such materials was both calculated using density functional theory and measured via vibrating sample magnetometry. A discrepancy was found; the computational data demonstrated a positive correlation between manganese content and saturation magnetization, while the experimental data exhibited an inverse correlation. X-ray diffraction (XRD) and magnetometry results indicated that the crystallite diameter and the magnetic diameter decrease when adding more manganese, which could explain the loss of magnetization of the particles. For 20 nm nanoparticles, with increasing manganese substitution level, the crystallite size decreases from 10.9 nm to 6.3 nm and the magnetic diameter decreases from 15.1 nm to 3.5 nm. Further high resolution transmission electron microscopy (HRTEM) analysis confirmed the manganese substitution induced defects in the crystal lattice, which encourages us to find ways of eliminating crystalline defects to make more reliable ferrite nanoparticles. 
    more » « less
  2. Abstract

    To produce multi-dopant ferrite nanoparticles, the ‘Extended LaMer’ and seed-mediated growth techniques were combined by first utilizing traditional thermal decomposition of metal acetylacetonates to produce seed particles, followed by a continuous injection of metal oleate precursors to increase the volume of the seed particles. With the choice of precursors for the seeding and dripping stage, we successfully synthesized particles with manganese precursor for seeding and cobalt precursor for dripping (Mn0.18Co1.04Fe1.78O4, 17.6 ± 3.3 nm), and particles with cobalt precursors for seeding and manganese precursors for dripping (Mn0.31Co0.74Fe1.95O4, 19.0 ± 1.9 nm). Combining transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, and vibrating sample magnetometry, we conclude that the seed-mediated drip method is a viable method to produce multi-dopant ferrite nanoparticles, and the size of the particles was mostly determined by the seeding stage, while the magnetic properties were more affected by the dripping stage.

     
    more » « less