skip to main content


Search for: All records

Creators/Authors contains: "Yang, Huan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nitrogen (N) doped graphene materials have been synthesized using the sole precursor adenine on the Ir(111) and Ru(0001) surfaces. X-ray photoelectron spectroscopy and scanning tunneling microscopy (STM) have been used to characterize the obtained N-doped graphene materials. Several graphitic and pyridinic N dopants have been identified on the atomic scale by combining STM measurements and STM simulations based on density functional theory calculations. 
    more » « less
    Free, publicly-accessible full text available July 7, 2024
  2. Abstract Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are archaeal monolayer membrane lipids that can provide a competitive advantage in extreme environments. Here, we identify a radical SAM protein, tetraether synthase (Tes), that participates in the synthesis of GDGTs. Attempts to generate a tes-deleted mutant in Sulfolobus acidocaldarius were unsuccessful, suggesting that the gene is essential in this organism. Heterologous expression of tes homologues leads to production of GDGT and structurally related lipids in the methanogen Methanococcus maripaludis (which otherwise does not synthesize GDGTs and lacks a tes homolog, but produces a putative GDGT precursor, archaeol). Tes homologues are encoded in the genomes of many archaea, as well as in some bacteria, in which they might be involved in the synthesis of bacterial branched glycerol dialkyl glycerol tetraethers. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Recently, wireless communication technologies, such as Wireless Local Area Networks (WLANs), have gained increasing popularity in industrial control systems (ICSs) due to their low cost and ease of deployment, but communication delays associated with these technologies make it unsuitable for critical real-time and safety applications. To address concerns on network-induced delays of wireless communication technologies and bring their advantages into modern ICSs, wireless network infrastructure based on the Parallel Redundancy Protocol (PRP) has been proposed. Although application-specific simulations and measurements have been conducted to show that wireless network infrastructure based on PRP can be a viable solution for critical applications with stringent delay performance constraints, little has been done to devise an analytical framework facilitating the adoption of wireless PRP infrastructure in miscellaneous ICSs. Leveraging the deterministic network calculus (DNC) theory, we propose to analytically derive worst-case bounds on network- induced delays for critical ICS applications. We show that the problem of worst-case delay bounding for a wireless PRP network can be solved by performing network-calculus-based analysis on its non-feedforward traffic pattern. Closed-form expressions of worst-case delays are derived, which has not been found previously and allows ICS architects/designers to compute worst- case delay bounds for ICS tasks in their respective application domains of interest. Our analytical results not only provide insights into the impacts of network-induced delays on latency- critical tasks but also allow ICS architects/operators to assess whether proper wireless RPR network infrastructure can be adopted into their systems. 
    more » « less
  6. Abstract The Taishan Antineutrino Observatory (TAO or JUNO-TAO) is a satellite experiment of the Jiangmen Underground Neutrino Observatory (JUNO). Located near a reactor of the Taishan Nuclear Power Plant, TAO will measure the reactor antineutrino energy spectrum with an unprecedented energy resolution of $$<2\%$$ < 2 % at 1 MeV. Energy calibration is critical to achieve such a high energy resolution. Using the Automated Calibration Unit (ACU) and the Cable Loop System (CLS), multiple radioactive sources are deployed to various positions in the TAO detector for energy calibration. The residual non-uniformity can be controlled within 0.2%. The energy resolution degradation and energy bias caused by the residual non-uniformity can be controlled within 0.05% and 0.3%, respectively. The uncertainty of the non-linear energy response can be controlled within 0.6% with the radioactive sources of various energies, and could be further improved with cosmogenic $$^{12}{\textrm{B}}$$ 12 B which is produced by the interaction of cosmic muon in the liquid scintillator. The stability of other detector parameters, e.g., the gain of each Silicon Photo-multiplier, will be monitored with an ultraviolet LED calibration system. 
    more » « less
  7. Recently, switched Ethernet has become increasingly popular in networked cyber-physical systems (NCPS). In an Ethernet-based NCPS, network-connected devices (e.g., sensors and actuators) realize time-critical tasks by exchanging miscellaneous information, such as sensor readings and control commands. To ensure reliable control and operation, network-induced delays for time-critical NCPS applications must be carefully examined. In this work, we propose a framework combining network delay measurements and network-calculus-based delay performance analysis to obtain accurate, deterministic worst-case delay bounds for NCPS. By modeling traffic sources and networking devices (e.g., Ethernet switches) through measurements, we establish accurate traffic and device models for network-calculus-based analysis. To obtain worst-case delay bounds, different network-calculus-based analytical methods can be leveraged, allowing CPS architects to customize the proposed delay analysis framework to suit application-specific needs. Our evaluation results show that the proposed approach derives accurate delay bounds, making it a valuable tool for architects designing NCPSs supporting time-critical applications. 
    more » « less
  8. In this work, we propose to derive realistic, accurate bounds on network-induced delays for time-critical tasks running on Avionics Full-Duplex Switched Ethernet. In the WiP poster, we present preliminary evaluation results showing that through measurement-based modeling and refining network-calculus-based analysis with measurements, tight delay bounds can be obtained for AFDX networks with realistic traffic patterns and network workloads. 
    more » « less