skip to main content


Search for: All records

Creators/Authors contains: "Yang, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Memristors have attracted increasing attention due to their tremendous potential to accelerate data-centric computing systems. The dynamic reconfiguration of memristive devices in response to external electrical stimuli can provide highly desirable novel functionalities for computing applications when compared with conventional complementary-metal–oxide–semiconductor (CMOS)-based devices. Those most intensively studied and extensively reviewed memristors in the literature so far have been filamentary type memristors, which typically exhibit a relatively large variability from device to device and from switching cycle to cycle. On the other hand, filament-free switching memristors have shown a better uniformity and attractive dynamical properties, which can enable a variety of new computing paradigms but have rarely been reviewed. In this article, a wide range of filament-free switching memristors and their corresponding computing applications are reviewed. Various junction structures, switching properties, and switching principles of filament-free memristors are surveyed and discussed. Furthermore, we introduce recent advances in different computing schemes and their demonstrations based on non-filamentary memristors. This Review aims to present valuable insights and guidelines regarding the key computational primitives and implementations enabled by these filament-free switching memristors.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. Free, publicly-accessible full text available June 1, 2024
  8. Memristive devices can offer dynamic behaviour, analogue programmability, and scaling and integration capabilities. As a result, they are of potential use in the development of information processing and storage devices for both conventional and unconventional computing paradigms. Their memristive switching processes originate mainly from the modulation of the number and position of structural defects or compositional impurities—what are commonly referred to as imperfections. While the underlying mechanisms and potential applications of memristors based on traditional bulk materials have been extensively studied, memristors based on van der Waals materials have only been considered more recently. Here we examine imperfection-enabled memristive switching in van der Waals materials. We explore how imperfections— together with the inherent physicochemical properties of the van der Waals materials—create different switching mechanisms, and thus provide a range of opportunities to engineer switching behaviour in memristive devices. We also discuss the challenges involved in terms of material selection, mechanism investigation and switching uniformity control, and consider the potential of van der Waals memristors in system-level implementations of efficient computing technologies. 
    more » « less
    Free, publicly-accessible full text available July 17, 2024
  9. Free, publicly-accessible full text available May 1, 2024