skip to main content


Search for: All records

Creators/Authors contains: "Yang, Xin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Projection maintenance is one of the core data structure tasks. Efficient data structures for projection maintenance have led to recent breakthroughs in many convex programming algorithms. In this work, we further extend this framework to the Kronecker product structure. Given a constraint matrix A and a positive semi-definite matrix W∈R^{n×n} with a sparse eigenbasis, we consider the task of maintaining the projection in the form of B^⊤(BB^⊤)^{−1} B, where B=A(W⊗I) or B=A(W^{1/2}⊗W^{1/2}). At each iteration, the weight matrix W receives a low rank change and we receive a new vector h. The goal is to maintain the projection matrix and answer the query B^⊤(BB^⊤)^{−1} Bh with good approximation guarantees. We design a fast dynamic data structure for this task and it is robust against an adaptive adversary. Following the beautiful and pioneering work of [Beimel, Kaplan, Mansour, Nissim, Saranurak and Stemmer, STOC’22], we use tools from differential privacy to reduce the randomness required by the data structure and further improve the running time. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract

    Across three pre‐registered studies (n = 221 4–9‐year olds, 51% female; 218 parents, 80% female; working‐ and middle‐class backgrounds; data collected during 2019–2021) conducted in the United States (Studies 1–2; 74% White) and China (Study 3; 100% Asian), we document the emergence of a preference for “strivers.” Beginning at age 7, strivers (who work really hard) were favored over naturals (who are really smart) in both cultures (R2ranging .03–.11). We explored several lay beliefs surrounding this preference. Beliefs about outcomes and the controllability of effort predicted the striver preference: Children who expected strivers to be more successful than naturals and believed effort was more controllable than talent preferred strivers more. Implications of the striver preference in education and beyond are discussed.

     
    more » « less
  4. Free, publicly-accessible full text available August 2, 2024
  5. Partial differential equations are common models in biology for predicting and explaining complex behaviors. Nevertheless, deriving the equations and estimating the corresponding parameters remains challenging from data. In particular, the fine description of the interactions between species requires care for taking into account various regimes such as saturation effects. We apply a method based on neural networks to discover the underlying PDE systems, which involve fractional terms and may also contain integration terms based on observed data. Our proposed framework, called Frac-PDE-Net, adapts the PDE-Net 2.0 by adding layers that are designed to learn fractional and integration terms. The key technical challenge of this task is the identifiability issue. More precisely, one needs to identify the main terms and combine similar terms among a huge number of candidates in fractional form generated by the neural network scheme due to the division operation. In order to overcome this barrier, we set up certain assumptions according to realistic biological behavior. Additionally, we use an L2-norm based term selection criterion and the sparse regression to obtain a parsimonious model. It turns out that the method of Frac-PDE-Net is capable of recovering the main terms with accurate coefficients, allowing for effective long term prediction. We demonstrate the interest of the method on a biological PDE model proposed to study the pollen tube growth problem. 
    more » « less
  6. Abstract

    The Poisson–Boltzmann (PB) model is a widely used electrostatic model for biomolecular solvation analysis. Formulated as an elliptic interface problem, the PB model can be numerically solved on either Eulerian meshes using finite difference/finite element methods or Lagrangian meshes using boundary element methods. Molecular surface generators, which produce the discretized dielectric interfaces between solutes and solvents, are critical factors in determining the accuracy and efficiency of the PB solvers. In this work, we investigate the utility of the Eulerian Solvent Excluded Surface (ESES) software for rendering conjugated Eulerian and Lagrangian surface representations, which enables us to numerically validate and compare the quality of Eulerian PB solvers, such as the MIBPB solver, and the Lagrangian PB solvers, such as the TABI‐PB solver. Furthermore, with the ESES software and its associated PB solvers, we are able to numerically validate an interesting and useful but often neglected source‐target symmetric property associated with the linearized PB model.

     
    more » « less
  7. Abstract Plasma stability in reactive mixtures is critical for various applications from plasma-assisted combustion to gas conversion. To generate stable and uniform plasmas and control the transition towards filamentation, the underlying physics and chemistry need a further look. This work investigates the plasma thermal-chemical instability triggered by dimethyl-ether (DME) low-temperature oxidation in a repetitive nanosecond pulsed dielectric barrier discharge. First, a plasma-combustion kinetic mechanism of DME/air is developed and validated using temperature and ignition delay time measurements in quasi-uniform plasmas. Then the multi-stage dynamics of thermal-chemical instability is experimentally explored: the DME/air discharge was initially uniform, then contracted to filaments, and finally became uniform again before ignition. By performing chemistry modeling and analyzing the local thermal balance, it is found that such nonlinear development of the thermal-chemical instability is controlled by the competition between plasma-enhanced low-temperature heat release and the increasing thermal diffusion at higher temperature. Further thermal-chemical mode analysis identifies the chemical origin of this instability as DME low-temperature chemistry. This work connects experiment measurements with theoretical analysis of plasma thermal-chemical instability and sheds light on future chemical control of the plasma uniformity. 
    more » « less
  8. Abstract

    The Arctic warms nearly four times faster than the global average, and aerosols play an increasingly important role in Arctic climate change. In the Arctic, sea salt is a major aerosol component in terms of mass concentration during winter and spring. However, the mechanisms of sea salt aerosol production remain unclear. Sea salt aerosols are typically thought to be relatively large in size but low in number concentration, implying that their influence on cloud condensation nuclei population and cloud properties is generally minor. Here we present observational evidence of abundant sea salt aerosol production from blowing snow in the central Arctic. Blowing snow was observed more than 20% of the time from November to April. The sublimation of blowing snow generates high concentrations of fine-mode sea salt aerosol (diameter below 300 nm), enhancing cloud condensation nuclei concentrations up to tenfold above background levels. Using a global chemical transport model, we estimate that from November to April north of 70° N, sea salt aerosol produced from blowing snow accounts for about 27.6% of the total particle number, and the sea salt aerosol increases the longwave emissivity of clouds, leading to a calculated surface warming of +2.30 W m−2under cloudy sky conditions.

     
    more » « less