skip to main content


Search for: All records

Creators/Authors contains: "Ye, Lingling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Our study is to build an aftershock catalog with a low magnitude of completeness for the 2020 Mw 6.5 Stanley, Idaho, earthquake. This is challenging because of the low signal-to-noise ratios for recorded seismograms. Therefore, we apply convolutional neural networks (CNNs) and use 2D time–frequency feature maps as inputs for aftershock detection. Another trained CNN is used to automatically pick P-wave arrival times, which are then used in both nonlinear and double-difference earthquake location algorithms. Our new one-month-long catalog has 4644 events and a completeness magnitude (Mc) 1.9, which has over seven times more events and 0.9 lower Mc than the current U.S. Geological Survey National Earthquake Information Center catalog. The distribution and expansion of these aftershocks improve the resolution of two north-northwest-trending faults with different dip angles, providing further support for a central stepover region that changed the earthquake rupture trajectory and induced sustained seismicity. 
    more » « less
  2. Abstract In the aftermath of a significant earthquake, seismologists are frequently asked questions by the media and public regarding possible interactions with recent prior events, including events at great distances away, along with prospects of larger events yet to come, both locally and remotely. For regions with substantial earthquake catalogs that provide information on the regional Gutenberg–Richter magnitude–frequency relationship, Omori temporal aftershock statistical behavior, and aftershock productivity parameters, probabilistic responses can be provided for likelihood of nearby future events of larger magnitude, as well as expected behavior of the overall aftershock sequence. However, such procedures generally involve uncertain extrapolations of parameterized equations to infrequent large events and do not provide answers to inquiries about long-range interactions, either retrospectively for interaction with prior remote large events or prospectively for interaction with future remote large events. Dynamic triggering that may be involved in such long-range interactions occurs, often with significant temporal delay, but is not well understood, making it difficult to respond to related inquiries. One approach to addressing such inquiries is to provide retrospective or prospective occurrence histories for large earthquakes based on global catalogs; while not providing quantitative understanding of any physical interaction, experience-based guidance on the (typically very low) chances of causal interactions can inform public understanding of likelihood of specific scenarios they are commonly very interested in. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    The 2021MW6.0 Yangbi, Yunnan strike‐slip earthquake occurred on an unmapped crustal fault near the Weixi‐Qiaoho‐Weishan Fault along the southeast margin of the Tibetan Plateau. Using near‐source broadband seismic data from ChinArray, we investigate the spatial and temporal rupture evolution of the mainshock using apparent moment‐rate functions (AMRFs) determined by the empirical Green's function (EGF) method. Assuming a 1D line source on the fault plane, the rupture propagated unilaterally southeastward (∼144°) over a rupture length of ∼8.0 km with an estimated rupture speed of 2.1 km/s to 2.4 km/s. A 2D coseismic slip distribution for an assumed maximum rupture propagation speed of 2.2 km/s indicates that the rupture propagated to the southeast ∼8.0 km along strike and ∼5.0 km downdip with a peak slip of ∼2.1 m before stopping near the largest foreshock, where three bifurcating subfaults intersect. Using the AMRFs, the radiated energy of the mainshock is estimated as ∼. The relatively low moment scaled radiated energyof 1.5 × 10−5and intense foreshock and aftershock activity might indicate reactivation of an immature fault. The earthquake sequence is mainly distributed along a northwest‐southeast trend, and aftershocks and foreshocks are distributed near the periphery of the mainshock large‐slip area, suggesting that the stress in the mainshock slip zone is significantly reduced to below the level for more than a few overlapping aftershock to occur.

     
    more » « less
  6. Abstract

    The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain.

     
    more » « less
  7. Abstract

    A great earthquake struck the Semidi segment of the plate boundary along the Alaska Peninsula on 29 July 2021, re‐rupturing part of the 1938 rupture zone. The 2021MW8.2 Chignik earthquake occurred just northeast of the 22 July 2020MW7.8 Simeonof earthquake, with little slip overlap. Analysis of teleseismicPandSHwaves, regional Global Navigation Satellite System (GNSS) displacements, and near‐field and far‐field tsunami observations provides a good resolution of the 2021 rupture process. During ∼60‐s long faulting, the slip was nonuniformly distributed along the megathrust over depths from 32 to 40 km, with up to ∼12.9‐m slip in an ∼170‐km‐long patch. The 40–45 km down‐dip limit of slip is well constrained by GNSS observations along the Alaska Peninsula. Tsunami observations preclude significant slip from extending to depths <25 km, confining all coseismic slip to beneath the shallow continental shelf. Most aftershocks locate seaward of the large‐slip zones, with a concentration of activity up‐dip of the deeper southwestern slip zone. Some localized aftershock patches locate beneath the continental slope. The surface‐wave magnitudeMSof 8.1 for the 2021 earthquake is smaller thanMS = 8.3–8.4 for the 1938 event. Seismic and tsunami data indicate that slip in 1938 was concentrated in the eastern region of its aftershock zone, extending beyond the Semidi Islands, where the 2021 event did not rupture.

     
    more » « less