skip to main content


Search for: All records

Creators/Authors contains: "Yeung, Michael T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Silver nanovines, prepared at ambient pressure and temperature, were grown in solution using eutectic gallium‐indium (EGaIn) seeds. In this process, EGaIn serves both as an effective reductant and heterogeneous nucleation center enabling the selective growth of silver nanovines from aqueous silver nitrate solutions. This process is a versatile route towards grafted silver nanostructures performed under ambient conditions with non‐toxic reagents.

     
    more » « less
  2. For decades, borides have been primarily studied as crystallographic oddities. With such a wide variety of structures (a quick survey of the Inorganic Crystal Structure Database counts 1253 entries for binary boron compounds!), it is surprising that the applications of borides have been quite limited despite a great deal of fundamental research. If anything, the rich crystal chemistry found in borides could well provide the right tool for almost any application. The interplay between metals and the boron results in even more varied material's properties, many of which can be tuned via chemistry. Thus, the aim of this review is to reintroduce to the scientific community the developments in boride crystal chemistry over the past 60 years. We tie structures to material properties, and furthermore, elaborate on convenient synthetic routes toward preparing borides.

     
    more » « less
  3. Abstract

    The deformation behavior of the three metal dodecaborides (YB12, ZrB12, and Zr0.5Y0.5B12) is investigated using radial X‐ray diffraction under nonhydrostatic compression up to ≈60 GPa with a goal of understanding how bonding and metal composition control hardness. Zr0.5Y0.5B12, which has the highest Vickers hardness (Hv= 45.8 ± 1.3 GPa at 0.49 N load), also shows the highest bulk modulus (K0= 320 ± 5 GPa). The 0.49 N hardness for ZrB12and YB12are both lower and very similar, and both show lower bulk moduli (K0= 276 ± 7 GPa, andK0= 238 ± 6 GPa, respectively). Differential stress is then measured to study the strength and strength anisotropy. Zr0.5Y0.5B12supports the highest differential stress, in agreement with its high hardness, a fact that likely arises from atomic size mismatch between Zr and Y combined with the rigid network of boron cages. The (200) plane for all samples supports the largest differential strain, while the (111) plane supports the smallest, consistent with the theoretically predicted slip system of {111} [  ]. Strain softening is also observed for ZrB12. Finally, the full elastic stiffness tensors for ZrB12and YB12are solved. ZrB12is the most isotropic, but the extent of elastic anisotropy for all dodecaborides studied is relatively low due to the highly symmetric boron cage network.

     
    more » « less