skip to main content


Search for: All records

Creators/Authors contains: "Yin, Xiaodong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gavin Armstrong (Ed.)
    Quantum interference (QI)—the constructive or destructive interference of conduction pathways through molecular orbitals—plays a fundamental role in enhancing or suppressing charge and spin transport in organic molecular electronics. Graphical models were developed to predict constructive versus destructive interference in polyaromatic hydrocarbons and have successfully estimated the large conductivity differences observed in single-molecule transport measurements. A major challenge lies in extending these models to excitonic (photoexcited) processes, which typically involve distinct orbitals with different symmetries. Here we investigate how QI models can be applied as bridging moieties in intramolecular singlet-fission compounds to predict relative rates of triplet pair formation. In a series of bridged intramolecular singlet-fission dimers, we found that destructive QI always leads to a slower triplet pair formation across different bridge lengths and geometries. A combined experimental and theoretical approach reveals the critical considerations of bridge topology and frontier molecular orbital energies in applying QI conductance principles to predict rates of multiexciton generation. 
    more » « less
    Free, publicly-accessible full text available December 30, 2024
  2. Abstract

    Main‐chain boron‐containing π‐conjugated polymers are attractive for organic electronic, sensing, and imaging applications. Alternating terthiophene‐borane polymers were prepared and the effects of regioisomeric attachment of the conjugated linker and variations in the electronic effect of the pendent aryl groups (2,4,6‐tri‐tert‐butylphenyl, Mes*; 2,4,6‐tris(trifluoromethyl)phenyl, FMes) examined. Pd2dba3/P(t‐Bu)3‐catalyzed Stille polymerization of arylbis(2‐thienyl)borane and arylbis(3‐thienylborane) with 2,5‐bis(trimethylstannyl)thiophene at 120 °C gave polymers with appreciable molecular weight but MALDI‐TOF MS analyses showed evidence of unusually prominent homocoupling. These defects could be suppressed by using brominated rather than iodinated monomers, more hindered 2,5‐bis(tri‐n‐butylstannyl)thiophene as comonomer, and Pd2dba3/P(o‐tol)3as the catalyst at 100 °C. Under these conditions, macrocyclic species withn=3–10 repeating units formed preferentially according to MALDI‐TOF MS analyses. Photophysical studies revealed a prominent effect of the regiochemistry and the nature of the pendent aryl groups on the absorption and emission, giving rise to orange, yellow‐green, blue‐green, and blue emissive materials respectively. The electronic effects were rationalized through DFT calculations on bis(terthiophene) model systems.

     
    more » « less
  3. Conjugated polymers composed of tricoordinate boron and π-conjugated units possess extended conjugation with relatively low-lying LUMOs arising from p B –π interactions. However, donor–acceptor (D–A) polymers that feature triorganoboranes alternating with highly electron-rich donors remain scarce. We present here a new class of hybrid D–A polymers that combine electron-rich dithienosiloles or dithienogermoles with highly robust tricoordinate borane acceptors. Polymers of modest to high molecular weight are readily prepared by Pd-catalyzed Stille coupling reaction of bis(halothienyl)boranes and distannyldithienosiloles or -germoles. The polymers are obtained as dark red solids that are stable in air and soluble in common organic solvents. Long wavelength UV-vis absorptions at ca. 500–550 nm indicate effective π-conjugation and pronounced D–A interactions along the backbone. The emission maxima occur at wavelengths longer than 600 nm in solution and experience further shifts to lower energy with increasing solvent polarity, indicative of strong intramolecular charge transfer (ICT) character of the excited state. The powerful acceptor character of the borane comonomer units in the polymer structures is also evident from cyclic voltammetry (CV) analyses that reveal relatively low-lying LUMO levels of the polymers, enhancing the D–A interaction. Density functional theory (DFT) calculations on model oligomers further support these experimental observations. 
    more » « less
  4. Abstract

    The extension of conjugated organoboranes from monomeric species to oligomers, macrocycles, and polymers offers access to a plethora of fascinating new materials. The p–π* conjugation between empty orbitals on boron and the conjugated linkers not only affects the electronic structure and optical properties, but also enables mutual interactions between electron‐deficient boron centers. The unique properties of these electron‐deficient π‐conjugated systems are exploited in highly luminescent materials, organic optoelectronic devices, and sensing applications.

     
    more » « less
  5. Abstract

    The development of efficient organic sonosensitizers is crucial for sonodynamic therapy (SDT) in the field of cancer treatment. Herein, a new strategy for the development of efficient organic sonosensitizers based on triarylboron‐doped acenethiophene scaffolds is presented. The attachment of boron to the linear acenethiophenes lowers the lowest unoccupied molecular orbital (LUMO) energy, resulting in redshifted absorptions and emissions. After encapsulation with the amphiphilic polymer DSPE‐mPEG2000, it is found that the nanostructured BAnTh‐NPs and BTeTh‐NPs (nanoparticles of BAnTh and BTeTh) shows efficient hydroxyl radical (OH) generation under ultrasound (US) irradiation in aqueous solution with almost no phototoxicity, which can overcome the shortcomings of O2‐dependent SDT and avoid the potential cutaneous phototoxicity issue. In vitro and in vivo therapeutic results validate that boron‐doped acenethiophenes as sonosensitizers enable high SDT efficiency with low phototoxicity and good biocompatibility, indicating that boron‐functionalization of acenes is a promising strategy toward organic sonosensitizers for SDT.

     
    more » « less
  6. Abstract

    Ultralong afterglow emissions due to room‐temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light‐emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom‐free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well‐known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo‐responsive RTP materials. The intramolecular LPM1BNMnot only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals ofM1BNMalso undergo rapid photochromic switching. As a result, unusual emission switching from short‐lived fluorescence to long‐lived phosphorescence (radM1BNM,τRTP=232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.

     
    more » « less
  7. Abstract

    Ultralong afterglow emissions due to room‐temperature phosphorescence (RTP) are of paramount importance in the advancement of smart sensors, bioimaging and light‐emitting devices. We herein present an efficient approach to achieve rarely accessible phosphorescence of heavy atom‐free organoboranes via photochemical switching of sterically tunable fluorescent Lewis pairs (LPs). LPs are widely applied in and well‐known for their outstanding performance in catalysis and supramolecular soft materials but have not thus far been exploited to develop photo‐responsive RTP materials. The intramolecular LPM1BNMnot only shows a dynamic response to thermal treatment due to reversible N→B coordination but crystals ofM1BNMalso undergo rapid photochromic switching. As a result, unusual emission switching from short‐lived fluorescence to long‐lived phosphorescence (radM1BNM,τRTP=232 ms) is observed. The reported discoveries in the field of Lewis pairs chemistry offer important insights into their structural dynamics, while also pointing to new opportunities for photoactive materials with implications for fast responsive detectors.

     
    more » « less
  8. Abstract

    We herein describe a new design principle to achieve B/N‐doped cyclophane where an electron‐donor block of three triarylamines (Ar3N) and an acceptor block of three triarylboranes (Ar3B) are spatially separated on opposite sides of the π‐extended ring system. DFT computations revealed the distinct electronic structure of theblock‐type macrocycleMC‐b‐B3N3with a greatly enhanced dipole moment and reduced HOMO–LUMO energy gap in comparison to its analogue with alternating B and N sites,MC‐alt‐B3N3. The unique arrangement of borane acceptor Ar3B and amine donor Ar3N components inMC‐b‐B3N3induces exceptionally strong intramolecular charge transfer in the excited state, which is reflected in a largely red‐shifted luminescence at 612 nm in solution. The respective linear open‐chain oligomerL‐b‐B3N3was also synthesized for comparison. Our new approach to donor–acceptor macrocycles offers important fundamental insights and opens up a new avenue to unique optoelectronic materials.

     
    more » « less
  9. Abstract

    We herein describe a new design principle to achieve B/N‐doped cyclophane where an electron‐donor block of three triarylamines (Ar3N) and an acceptor block of three triarylboranes (Ar3B) are spatially separated on opposite sides of the π‐extended ring system. DFT computations revealed the distinct electronic structure of theblock‐type macrocycleMC‐b‐B3N3with a greatly enhanced dipole moment and reduced HOMO–LUMO energy gap in comparison to its analogue with alternating B and N sites,MC‐alt‐B3N3. The unique arrangement of borane acceptor Ar3B and amine donor Ar3N components inMC‐b‐B3N3induces exceptionally strong intramolecular charge transfer in the excited state, which is reflected in a largely red‐shifted luminescence at 612 nm in solution. The respective linear open‐chain oligomerL‐b‐B3N3was also synthesized for comparison. Our new approach to donor–acceptor macrocycles offers important fundamental insights and opens up a new avenue to unique optoelectronic materials.

     
    more » « less