skip to main content


Search for: All records

Creators/Authors contains: "Yong, Jeongsik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    The eukaryotic genome is capable of producing multiple isoforms from a gene by alternative polyadenylation (APA) during pre-mRNA processing. APA in the 3′-untranslated region (3′-UTR) of mRNA produces transcripts with shorter or longer 3′-UTR. Often, 3′-UTR serves as a binding platform for microRNAs and RNA-binding proteins, which affect the fate of the mRNA transcript. Thus, 3′-UTR APA is known to modulate translation and provides a mean to regulate gene expression at the post-transcriptional level. Current bioinformatics pipelines have limited capability in profiling 3′-UTR APA events due to incomplete annotations and a low-resolution analyzing power: widely available bioinformatics pipelines do not reference actionable polyadenylation (cleavage) sites but simulate 3′-UTR APA only using RNA-seq read coverage, causing false positive identifications. To overcome these limitations, we developed APA-Scan, a robust program that identifies 3′-UTR APA events and visualizes the RNA-seq short-read coverage with gene annotations.

    Methods

    APA-Scan utilizes either predicted or experimentally validated actionable polyadenylation signals as a reference for polyadenylation sites and calculates the quantity of long and short 3′-UTR transcripts in the RNA-seq data. APA-Scan works in three major steps: (i) calculate the read coverage of the 3′-UTR regions of genes; (ii) identify the potential APA sites and evaluate the significance of the events among two biological conditions; (iii) graphical representation of user specific event with 3′-UTR annotation and read coverage on the 3′-UTR regions. APA-Scan is implemented in Python3. Source code and a comprehensive user’s manual are freely available athttps://github.com/compbiolabucf/APA-Scan.

    Result

    APA-Scan was applied to both simulated and real RNA-seq datasets and compared with two widely used baselines DaPars and APAtrap. In simulation APA-Scan significantly improved the accuracy of 3′-UTR APA identification compared to the other baselines. The performance of APA-Scan was also validated by 3′-end-seq data and qPCR on mouse embryonic fibroblast cells. The experiments confirm that APA-Scan can detect unannotated 3′-UTR APA events and improve genome annotation.

    Conclusion

    APA-Scan is a comprehensive computational pipeline to detect transcriptome-wide 3′-UTR APA events. The pipeline integrates both RNA-seq and 3′-end-seq data information and can efficiently identify the significant events with a high-resolution short reads coverage plots.

     
    more » « less
  2. Robinson, Peter (Ed.)
    Abstract Motivation Accurate disease phenotype prediction plays an important role in the treatment of heterogeneous diseases like cancer in the era of precision medicine. With the advent of high throughput technologies, more comprehensive multi-omics data is now available that can effectively link the genotype to phenotype. However, the interactive relation of multi-omics datasets makes it particularly challenging to incorporate different biological layers to discover the coherent biological signatures and predict phenotypic outcomes. In this study, we introduce omicsGAN, a generative adversarial network model to integrate two omics data and their interaction network. The model captures information from the interaction network as well as the two omics datasets and fuse them to generate synthetic data with better predictive signals. Results Large-scale experiments on The Cancer Genome Atlas breast cancer, lung cancer and ovarian cancer datasets validate that (i) the model can effectively integrate two omics data (e.g. mRNA and microRNA expression data) and their interaction network (e.g. microRNA-mRNA interaction network). The synthetic omics data generated by the proposed model has a better performance on cancer outcome classification and patients survival prediction compared to original omics datasets. (ii) The integrity of the interaction network plays a vital role in the generation of synthetic data with higher predictive quality. Using a random interaction network does not allow the framework to learn meaningful information from the omics datasets; therefore, results in synthetic data with weaker predictive signals. Availability and implementation Source code is available at: https://github.com/CompbioLabUCF/omicsGAN. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. null (Ed.)
    Microbes and viruses are known to alter host transcriptomes by means of infection. In light of recent challenges posed by the COVID-19 pandemic, a deeper understanding of the disease at the transcriptome level is needed. However, research about transcriptome reprogramming by post-transcriptional regulation is very limited. In this study, computational methods developed by our lab were applied to RNA-seq data to detect transcript variants (i.e., alternative splicing (AS) and alternative polyadenylation (APA) events). The RNA-seq data were obtained from a publicly available source, and they consist of mock-treated and SARS-CoV-2 infected (COVID-19) lung alveolar (A549) cells. Data analysis results show that more AS events are found in SARS-CoV-2 infected cells than in mock-treated cells, whereas fewer APA events are detected in SARS-CoV-2 infected cells. A combination of conventional differential gene expression analysis and transcript variants analysis revealed that most of the genes with transcript variants are not differentially expressed. This indicates that no strong correlation exists between differential gene expression and the AS/APA events in the mock-treated or SARS-CoV-2 infected samples. These genes with transcript variants can be applied as another layer of molecular signatures for COVID-19 studies. In addition, the transcript variants are enriched in important biological pathways that were not detected in the studies that only focused on differential gene expression analysis. Therefore, the pathways may lead to new molecular mechanisms of SARS-CoV-2 pathogenesis. 
    more » « less
  4. (1) Background: A simplistic understanding of the central dogma falls short in correlating the number of genes in the genome to the number of proteins in the proteome. Post-transcriptional alternative splicing contributes to the complexity of the proteome and is critical in understanding gene expression. mRNA-sequencing (RNA-seq) has been widely used to study the transcriptome and provides opportunity to detect alternative splicing events among different biological conditions. Despite the popularity of studying transcriptome variants with RNA-seq, few efficient and user-friendly bioinformatics tools have been developed for the genome-wide detection and visualization of alternative splicing events. (2) Results: We propose AS-Quant, (Alternative Splicing Quantitation), a robust program to identify alternative splicing events from RNA-seq data. We then extended AS-Quant to visualize the splicing events with short-read coverage plots along with complete gene annotation. The tool works in three major steps: (i) calculate the read coverage of the potential spliced exons and the corresponding gene; (ii) categorize the events into five different categories according to the annotation, and assess the significance of the events between two biological conditions; (iii) generate the short reads coverage plot for user specified splicing events. Our extensive experiments on simulated and real datasets demonstrate that AS-Quant outperforms the other three widely used baselines, SUPPA2, rMATS, and diffSplice for detecting alternative splicing events. Moreover, the significant alternative splicing events identified by AS-Quant between two biological contexts were validated by RT-PCR experiment. (3) Availability: AS-Quant is implemented in Python 3.0. Source code and a comprehensive user’s manual are freely available online. 
    more » « less
  5. null (Ed.)
    Deregulation of gene expression is associated with the pathogenesis of numerous human diseases including cancer. Current data analyses on gene expression are mostly focused on differential gene/transcript expression in big data-driven studies. However, a poor connection to the proteome changes is a widespread problem in current data analyses. This is partly due to the complexity of gene regulatory pathways at the post-transcriptional level. In this study, we overcome these limitations and introduce a graph-based learning model, PTNet, which simulates the microRNAs (miRNAs) that regulate gene expression post-transcriptionally in silico. Our model does not require large-scale proteomics studies to measure the protein expression and can successfully predict the protein levels by considering the miRNA–mRNA interaction network, the mRNA expression, and the miRNA expression. Large-scale experiments on simulations and real cancer high-throughput datasets using PTNet validated that (i) the miRNA-mediated interaction network affects the abundance of corresponding proteins and (ii) the predicted protein expression has a higher correlation with the proteomics data (ground-truth) than the mRNA expression data. The classification performance also shows that the predicted protein expression has an improved prediction power on cancer outcomes compared to the prediction done by the mRNA expression data only or considering both mRNA and miRNA. Availability: PTNet toolbox is available at http://github.com/CompbioLabUCF/PTNet 
    more » « less
  6. The eukaryotic genome is capable of producing multiple isoforms from a gene by alternative polyadenylation (APA) during pre-mRNA processing. APA in the 3’-untranslated region (3’-UTR) of mRNA produces transcripts with shorter 3’-UTR. Often, 3’-UTR serves as a binding platform for microRNAs and RNA-binding proteins, which affect the fate of the mRNA transcript. Thus, 3’-UTR APA provides a means to regulate gene expression at the post-transcriptional level and is known to promote translation. Current bioinformatics pipelines have limited capability in profiling 3’-UTR APA events due to incomplete annotations and a low-resolution analyzing power: widely available bioinformatics pipelines do not reference actionable polyadenylation (cleavage) sites but simulate 3’-UTR APA only using RNA-seq read coverage, causing false positive identifications. To overcome these limitations, we developed APA-Scan, a robust program that identifies 3’-UTR APA events and visualizes the RNA-seq short-read coverage with gene annotations. APA-Scan utilizes either predicted or experimentally validated actionable polyadenylation signals as a reference for polyadenylation sites and calculates the quantity of long and short 3’-UTR transcripts in the RNA-seq data. The performance of APA-Scan was validated by qPCR. 
    more » « less
  7. Abstract U2 auxiliary factor 1 (U2AF1) functions in 3′-splice site selection during pre-mRNA processing. Alternative usage of duplicated tandem exons in U2AF1 produces two isoforms, U2AF1a and U2AF1b, but their functional differences are unappreciated due to their homology. Through integrative approaches of genome editing, customized-transcriptome profiling and crosslinking-mediated interactome analyses, we discovered that the expression of U2AF1 isoforms is controlled by mTOR and they exhibit a distinctive molecular profile for the splice site and protein interactomes. Mechanistic dissection of mutually exclusive alternative splicing events revealed that U2AF1 isoforms’ inherent differential preferences of nucleotide sequences and their stoichiometry determine the 3′-splice site. Importantly, U2AF1a-driven transcriptomes feature alternative splicing events in the 5′-untranslated region (5′-UTR) that are favorable for translation. These findings unveil distinct roles of duplicated tandem exon-derived U2AF1 isoforms in the regulation of the transcriptome and suggest U2AF1a-driven 5′-UTR alternative splicing as a molecular mechanism of mTOR-regulated translational control. 
    more » « less
  8. Abstract Motivation

    Accurate estimation of transcript isoform abundance is critical for downstream transcriptome analyses and can lead to precise molecular mechanisms for understanding complex human diseases, like cancer. Simplex mRNA Sequencing (RNA-Seq) based isoform quantification approaches are facing the challenges of inherent sampling bias and unidentifiable read origins. A large-scale experiment shows that the consistency between RNA-Seq and other mRNA quantification platforms is relatively low at the isoform level compared to the gene level. In this project, we developed a platform-integrated model for transcript quantification (IntMTQ) to improve the performance of RNA-Seq on isoform expression estimation. IntMTQ, which benefits from the mRNA expressions reported by the other platforms, provides more precise RNA-Seq-based isoform quantification and leads to more accurate molecular signatures for disease phenotype prediction.

    Results

    In the experiments to assess the quality of isoform expression estimated by IntMTQ, we designed three tasks for clustering and classification of 46 cancer cell lines with four different mRNA quantification platforms, including newly developed NanoString’s nCounter technology. The results demonstrate that the isoform expressions learned by IntMTQ consistently provide more and better molecular features for downstream analyses compared with five baseline algorithms which consider RNA-Seq data only. An independent RT-qPCR experiment on seven genes in twelve cancer cell lines showed that the IntMTQ improved overall transcript quantification. The platform-integrated algorithms could be applied to large-scale cancer studies, such as The Cancer Genome Atlas (TCGA), with both RNA-Seq and array-based platforms available.

    Availability and implementation

    Source code is available at: https://github.com/CompbioLabUcf/IntMTQ.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less