skip to main content


Search for: All records

Creators/Authors contains: "Yoo, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many researchers have identified the need for a more holistic understanding of the role of feedback in supporting learning in online environments. This study explores how our design, development, and implementation of an online feedback facilitation system influenced high school science teachers’ learning in an asynchronous teacher professional development online course. We then describe teachers’ and facilitators’, i.e., feedback providers’, perceptions of the effectiveness of the system’s features for supporting participants’ learning and engagement. Our work also responds to recent calls for developing a more nuanced understanding of how the complexity of feedback influences learning and the need for more qualitative research on online facilitators’ and learners’ experiences working with new technologies. Results demonstrated that, despite the difficulty of analyzing the complex variables influencing learners’ interactions and perceptions of the feedback system, designing adaptive feedback systems that draw on the principles of design- based implementation research (DBIR) offer promise for enhancing the systems’ contributions to teacher learning. 
    more » « less
  2. Abstract We present results of several measurements of CsI[Na] scintillation response to 3–60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region. 
    more » « less
  3. Abstract

    An important measure of the development of quantum computing platforms has been the simulation of increasingly complex physical systems. Before fault-tolerant quantum computing, robust error-mitigation strategies were necessary to continue this growth. Here, we validate recently introduced error-mitigation strategies that exploit the expectation that the ideal output of a quantum algorithm would be a pure state. We consider the task of simulating electron systems in the seniority-zero subspace where all electrons are paired with their opposite spin. This affords a computational stepping stone to a fully correlated model. We compare the performance of error mitigations on the basis of doubling quantum resources in time or in space on up to 20 qubits of a superconducting qubit quantum processor. We observe a reduction of error by one to two orders of magnitude below less sophisticated techniques such as postselection. We study how the gain from error mitigation scales with the system size and observe a polynomial suppression of error with increased resources. Extrapolation of our results indicates that substantial hardware improvements will be required for classically intractable variational chemistry simulations.

     
    more » « less